【題目】如圖所示,直線a經過正方形ABCD的頂點A,分別過正方形的頂點B、D作BF⊥a于點F,DE⊥a于點E,若DE=8,BF=5,則EF的長為__.
![]()
【答案】13
【解析】試題分析:根據正方形的性質、直角三角形兩個銳角互余以及等量代換可以證得△AFB≌△AED;然后由全等三角形的對應邊相等推知AF=DE、BF=AE,所以EF=AF+AE=13.
解:∵ABCD是正方形(已知),
∴AB=AD,∠ABC=∠BAD=90°;
又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,
∴∠FBA=∠EAD(等量代換);
∵BF⊥a于點F,DE⊥a于點E,
∴在Rt△AFB和Rt△AED中,
∵
,
∴△AFB≌△AED(AAS),
∴AF=DE=8,BF=AE=5(全等三角形的對應邊相等),
∴EF=AF+AE=DE+BF=8+5=13.
故答案為:13.
科目:初中數學 來源: 題型:
【題目】為了鼓勵市民節約用水,自來水公司特制定了新的用水收費標準,每月用水量,x(噸)與應付水費(元)的函數關系如圖.
(1)求出當月用水量不超過5噸時,y與x之間的函數關系式;
(2)某居民某月用水量為8噸,求應付的水費是多少?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點,連接BD,使∠A=2∠1,E是BC上的一點,以BE為直徑的⊙O經過點D. ![]()
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結果保留根號和π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校在甲、乙兩名同學中選拔一人參加襄陽廣播電臺舉辦“國學風,少年頌”襄陽首屆少年兒童經典誦讀大賽.在相同的測試條件下,兩人3次測試成績(單位:分)如下:甲:79,86,82;乙:88,79,90.從甲、乙兩人3次的成績中各隨機抽取一次成績進行分析,求抽到的兩個人的成績都大于80分的概率是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y1=kx+b(k<0)與反比例函數y2=
的圖象相交于A、B兩點,一次函數的圖象與y軸相交于點C,已知點A(4,1),B(n,2)) ![]()
(1)求反比例函數和一次函數的解析式;
(2)寫出y1>y2時,x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場服裝部分為了解服裝的銷售情況,統計了每位營業員在某月的銷售額(單位:萬元),并根據統計的這組銷售額的數據,繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:
該商場服裝營業員的人數為 ,圖①中m的值為 ;
求統計的這組銷售額數據的平均數、眾數和中位數.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB和直線CD,直線BE和直線CF都被直線BC所截,在下面三個式子只,請你選擇其中兩個作為題設,剩下的一個作為結論,組成一個真命題并寫出對應的推理過程
題設
已知
;______
結論
求證
:______
理由:
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com