【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于D,交AC于E.
(1)求證:D為BC的中點;
(2)過點O作OF⊥AC,于F,若AF=
,BC=2,求⊙O的直徑.
![]()
【答案】(1)證明見解析;(2)⊙O的直徑為4.
【解析】
試題(1)連接AD,根據直徑所對的圓周角是直角,以及三線合一定理即可證得;
(2)先根據垂徑定理,求得AE=2AF=
;再運用圓周角定理的推論得∠ADB=∠ADC=∠BEA=∠BEC=90°,從而可證得∴△BEC∽△ADC,即CD:CE=AC:BC,根據此關系列方程求解即可得⊙O的直徑.
試題解析:(1)連接AD
![]()
∵AB是⊙O的直徑,
∴AD⊥BC,
又∵AB=AC,
∴點D是BC的中點;
(2)∵OF⊥AC于F,AF=
,
∴AE=2AF=
,
連接BE,
∵AB為直徑 D、E在圓上,
∴∠ADB=∠ADC=∠BEA=∠BEC=90°,
∴在△BEC、△ADC中,
∠BEC=∠ADC,∠C=∠C,
∴△BEC∽△ADC,
即CD:CE=AC:BC,
∵D為BC中點,
∴CD=
BC,
又∵AC=AB,
∴
BC2=CEAB,
設AB=x,可得 x(x﹣
)=2,解得x1=﹣
(舍去),x2=4,
∴⊙O的直徑為4.
科目:初中數學 來源: 題型:
【題目】已知拋物線p:
的頂點為C,與x軸相交于A、B兩點(點A在點B左側),點C關于x軸的對稱點為C′,我們稱以A為頂點且過點C′,對稱軸與y軸平行的拋物線為拋物線p的“夢之星”拋物線,直線AC′為拋物線p的“夢之星”直線.若一條拋物線的“夢之星”拋物線和“夢之星”直線分別是
和y=2x+2,則這條拋物線的解析式為____________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知
和
都是等腰直角三角形,
.
(1)若
為
上一動點時(如圖1),
![]()
①求證:
.
②試求線段
,
,
間滿足的數量關系.
(2)當點
在
內部時(如圖2),延長
交
于點
.
![]()
①求證:
.
②連結
,當
為等邊三角形時,直接寫出
與
的直角邊長之比.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ ABC 和△ADE都是等邊三角形,點 B 在 ED 的延長線上.
(1)求證:△ABD≌△ACE.
(2)求證:AE+CE=BE.
(3)求∠BEC 的度數.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的長AB=30,寬BC=20.
(1)如圖(1)若沿矩形ABCD四周有寬為1的環形區域,圖中所形成的兩個矩形ABCD與A′B′C′D′相似嗎?請說明理由;
(2)如圖(2),x為多少時,圖中的兩個矩形ABCD與A′B′C′D′相似?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當﹣1<x<3時,y>0,其中正確的個數為( 。
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,點P、Q在DC邊上,且PQ=
DC.若AB=16,BC=20,則圖中陰影部分的面積是 .
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com