【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=
的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標是(m,﹣4),連接AO,AO=5,sin∠AOC=
.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OB,求△AOB的面積.
![]()
【答案】(1)y=﹣
,y=﹣x﹣1;(2)![]()
【解析】
(1)過點A作AE⊥x軸于點E,通過解直角三角形求出線段AE、OE的長度,即求出點A的坐標,再由點A的坐標利用待定系數(shù)法求出反比例函數(shù)解析式即可,再由點B在反比例函數(shù)圖象上可求出點B的坐標,由點A、B的坐標利用待定系數(shù)法求出直線AB的解析式;
(2)令一次函數(shù)解析式中y=0即可求出點C的坐標,再利用三角形的面積公式即可得出結(jié)論.
解:(1)過點
作
軸于點
,
則
.
在
中,
,
,
,
,
點
的坐標為
.
點
在反比例函數(shù)
的圖象上,
,解得:
.
反比例函數(shù)解析式為
.
點
在反比例函數(shù)
的圖象上,
,解得:
,
點
的坐標為
.
將點
、點
代入
中得:
,
解得:
,
一次函數(shù)解析式為
.
(2)令一次函數(shù)
中
,則
,
解得:
,即點
的坐標為
.
.
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AD=5,AB=3.若M為射線AD上的一個動點,將△ABM沿BM折疊得到△NBM.若△NBC是直角三角形.則所有符合條件的M點所對應(yīng)的AM長度的和為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖二次函數(shù)的圖象與
軸交于點
和
兩點,與
軸交于點
,點
、
是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象經(jīng)過
、![]()
![]()
(1)求二次函數(shù)的解析式;
(2)寫出使一次函數(shù)值大于二次函數(shù)值的
的取值范圍;
(3)若直線
與
軸的交點為
點,連結(jié)
、
,求
的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小星同學(xué)設(shè)計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:
已知:如圖,直線l和直線l外一點A
求作:直線AP,使得AP∥l
作法:如圖
①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.
②連接AC,AB,延長BA到點D;
③作∠DAC的平分線AP.
所以直線AP就是所求作的直線
根據(jù)小星同學(xué)設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡)
![]()
(2)完成下面的證明
證明:∵AB=AC,
∴∠ABC=∠ACB (填推理的依據(jù))
∵∠DAC是△ABC的外角,
∴∠DAC=∠ABC+∠ACB (填推理的依據(jù))
∴∠DAC=2∠ABC
∵AP平分∠DAC,
∴∠DAC=2∠DAP
∴∠DAP=∠ABC
∴AP∥l (填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,E為∠ACB平分線CD上一動點(不與點C重合),點E關(guān)于直線BC的對稱點為F,連接AE并延長交CB延長線于點H,連接FB并延長交直線AH于點G.
(1)求證:AE=BF.
(2)用等式表示線段FG,EG與CE的數(shù)量關(guān)系,并證明.
(3)連接GC,用等式表示線段GE,GC與GF的數(shù)量關(guān)系是 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
![]()
(1)求證:△BED≌△CFD;
(2)若∠A=60°,BE=2,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE = AF
![]()
(1)求證:BE = DF;
(2)連接AC交EF于點O,延長OC至點M,使OM = OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,D是線段AB上一點(0<AD<
AB).過點B作BE⊥CD,垂足為E.將線段CE繞點C逆時針旋轉(zhuǎn)90°,得到線段CF,連接AF,EF.設(shè)∠BCE的度數(shù)為α.
![]()
(1)①依題意補全圖形.
②若α=60°,則∠CAF=_____°;
=_____;
(2)用含α的式子表示EF與AB之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=
(x+1)(x﹣3)(m為常數(shù),且m>0)經(jīng)過點c(0,﹣
),與x軸交于點A、B(點A位于點B的左側(cè)).
![]()
(1)請直接寫出m的值及點A、點B的坐標;
(2)請你探究:在直線BC上是否存在點P,使以P、A、B為頂點的三角形與△BOC相似?若存在,請求出AP的長;若不存在,說明理由.
(3)如圖2,點D(2,﹣
),連接AD,拋物線上是否存在點Q,使∠BAQ=2∠BAD,若存在,請直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com