【題目】在Rt△ABC中,
,AC=3,BC=4.點(diǎn)O為邊AB上一點(diǎn)(不與A重合)⊙O是以點(diǎn)O為圓心,AO為半徑的圓.當(dāng)⊙O與三角形邊的交點(diǎn)個(gè)數(shù)為3時(shí),則OA的范圍( )
A.
或
B.
或![]()
C.
D.
或![]()
【答案】B
【解析】
根據(jù)題意可以畫出相應(yīng)的圖形,然后即可得到OA的取值范圍,本題得以解決.
如圖所示,
![]()
當(dāng)圓心從O1到O3的過程中,⊙O與三角形邊的交點(diǎn)個(gè)數(shù)為3,當(dāng)恰好到達(dá)O3時(shí)則變?yōu)?/span>4個(gè)交點(diǎn),
作O3D⊥BC于點(diǎn)D,
則∠O3BD=∠ABC,
∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB=5,
設(shè)O3A=a,則O3B=5-a,
∴
,得a=
,
∴當(dāng)0<OA<
時(shí),⊙O與三角形邊的交點(diǎn)個(gè)數(shù)為3,
當(dāng)點(diǎn)O為AB的中點(diǎn)時(shí),⊙O與三角形邊的交點(diǎn)個(gè)數(shù)為3,此時(shí)OA=2.5,
由上可得,0<OA<
或OA=2.5時(shí),⊙O與三角形邊的交點(diǎn)個(gè)數(shù)為3,
故選:B.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E為OC上動(dòng)點(diǎn)(與點(diǎn)O不重合),作AF⊥BE,垂足為G,交BC于F,交B0于H,連接OG,CC.
(1)求證:AH=BE;
(2)試探究:∠AGO的度數(shù)是否為定值?請(qǐng)說明理由;
(3)若OG⊥CG,BG=
,求△OGC的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車沿相同路線從
城出發(fā)前往
城.已知
、
兩城之間的距離是300km,甲車8:30出發(fā),速度為
;乙車9:30出發(fā),速度為
.設(shè)甲、乙兩車離開
城的距離分別為
,
(單位:
),甲車行駛
.
(1)分別寫出
,
與
之間的函數(shù)關(guān)系式,并直接寫出
的取值范圍;
(2)當(dāng)甲車出發(fā)1.5小時(shí)時(shí),求甲車與乙車之間的距離;
(3)在乙車行駛過程中:
①求乙車沒有超過甲車時(shí)
的取值范圍;
②直接寫出甲車與乙車之間的距離是
時(shí)
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)由兩部分組成:固定費(fèi)用400元和服務(wù)費(fèi)用5元/平方米;
乙公司方案:綠化面積不超過1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求甲公司養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)的函數(shù)解析式(不要求寫出自變量的范圍);
(2)選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)有
名學(xué)生,在體育考試前隨機(jī)抽取部分學(xué)生進(jìn)行跳繩測(cè)試,根據(jù)測(cè)試成績(jī)制作了下面兩個(gè)不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
![]()
(1)本次參加跳繩測(cè)試的學(xué)生人數(shù)為 ,圖
中
的值為 ;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校九年級(jí)跳繩測(cè)試中得
分的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線
分別與
軸、
軸相交于點(diǎn)B、C,經(jīng)過點(diǎn)B、C的拋物線
與
軸的另一個(gè)交點(diǎn)為A.
(1)求出拋物線表達(dá)式,并求出點(diǎn)A坐標(biāo);
(2)已知點(diǎn)D在拋物線上,且橫坐標(biāo)為3,求出△BCD的面積;
(3)點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PQ垂直于
軸,垂足為Q.是否存在點(diǎn)P,使得以點(diǎn)A、P、Q為頂點(diǎn)的三角形與△BOC相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生掌握知識(shí)更加牢固,某校九年級(jí)物理組老師們將物理實(shí)驗(yàn)的教學(xué)方式由之前的理論教學(xué)改進(jìn)為理論+實(shí)踐,一段時(shí)間后,從九年級(jí)隨機(jī)抽取15名學(xué)生,對(duì)他們?cè)诮虒W(xué)方式改進(jìn)前后的物理實(shí)驗(yàn)成績(jī)(百分制)進(jìn)行整理、描述和分析(成績(jī)用
表示,共分成4組:A.
,B.
,C.
,D.
),下面給出部分信息:
教學(xué)方式改進(jìn)前抽取的學(xué)生的成績(jī)?cè)?/span>
組中的數(shù)據(jù)為:80,83,85,87,89.
教學(xué)方式改進(jìn)后抽取的學(xué)生成績(jī)?yōu)椋?/span>72,70,76,100,98,100,82,86,95,90,100,86,84,93,88.
教學(xué)方式改進(jìn)前抽取的學(xué)生成績(jī)頻數(shù)分布直方圖
![]()
教學(xué)方式改進(jìn)前后抽取的學(xué)生成績(jī)對(duì)比統(tǒng)計(jì)表
統(tǒng)計(jì)量 | 改進(jìn)前 | 改進(jìn)后 |
平均數(shù) | 88 | 88 |
中位數(shù) |
|
|
眾數(shù) | 98 |
|
根據(jù)以上信息,解答下列問題:
(1)直接寫出上述圖表中
的值;
(2)根據(jù)以上數(shù)據(jù),你認(rèn)為該校九年級(jí)學(xué)生的物理實(shí)驗(yàn)成績(jī)?cè)诮虒W(xué)方式改進(jìn)前好,還是改進(jìn)后好?請(qǐng)說明理由(一條理由即可);
(3)若該校九年級(jí)有300名學(xué)生,規(guī)定物理實(shí)驗(yàn)成績(jī)?cè)?/span>90分及以上為優(yōu)秀,估計(jì)教學(xué)方式改進(jìn)后成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個(gè)實(shí)數(shù)根分別為x1,x2.
(1)求m的取值范圍.
(2)若2(x1+x2)+ x1x2+10=0.求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線
與x軸交于點(diǎn)A,與雙曲線
在第一象限內(nèi)交于點(diǎn)B,BC丄x軸于點(diǎn)C,OC=2AO.
(1)求雙曲線的解析式.
(2)點(diǎn)D為y軸上一個(gè)動(dòng)點(diǎn),若S△ADB=3,求點(diǎn)D的坐標(biāo).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com