【題目】有這樣一個(gè)問題:探究函數(shù)
的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)
的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:
(1)函數(shù)
的自變量x的取值范圍是 ;
(2)下表是x與y的幾組對應(yīng)值.
| ... |
|
|
|
|
|
|
| 1 | 2 | 3 | ... |
| ... |
|
|
|
|
|
|
|
|
| m | ... |
求m的值;
(3)如圖,在平面直角坐標(biāo)系中,已描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
![]()
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1,
).結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(寫兩條即可).
【答案】(1)x≠0;(2)
;(3)畫圖見解析;(4)具體見解析.
【解析】試題分析:(1)由圖表可知x≠0;
(2)根據(jù)圖表可知當(dāng)x=3時(shí)的函數(shù)值為m,把x=3代入解析式即可求得;
(3)根據(jù)坐標(biāo)系中的點(diǎn),用平滑的曲線連接即可;
(4)觀察圖象即可得出該函數(shù)的其他性質(zhì).
試題解析:(1)x≠0;
(2)當(dāng)x=3 時(shí),
;
(3)注:要用平滑的曲線連接,圖象不能與y軸相交;
![]()
(4)函數(shù)的性質(zhì)有很多.如:
①當(dāng)x<0時(shí),y值隨著x值的增大而減;
②該函數(shù)沒有最大值;
③該函數(shù)圖象與y軸沒有交點(diǎn).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給的網(wǎng)格圖中,完成下列各題(用直尺畫圖,否則不給分)
(1)畫出格點(diǎn)△ABC關(guān)于直線DE的對稱的△A1B1C1;
(2)在DE上畫出點(diǎn)P,使PA+PC最。
(3)在DE上畫出點(diǎn)Q,使QA﹣QB最大.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,并規(guī)定顧客消費(fèi)
元以上,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì).如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅、黃或綠色區(qū)域,顧客就可以分別獲得
元,
元、
元的購物券(轉(zhuǎn)盤被等分成
個(gè)扇形).
顧客張吉祥消費(fèi)
元,他獲得購物券的概率是多少?
他得到
元,
元、
元購物券的概率分別是多少?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在BA的延長線上,CA=AO,點(diǎn)D在⊙O上,∠ABD=30°.
![]()
⑴求證:CD是⊙O的切線;
⑵若點(diǎn)P在直線AB上,⊙P與⊙O外切于點(diǎn)B,與直線CD相切于點(diǎn)E,設(shè)⊙O與⊙P的半徑分別為r與R,求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=16,O為AB中點(diǎn),點(diǎn)C在線段OB上(不與點(diǎn)O,B重合),將OC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)270°后得到扇形COD,AP,BQ分別切優(yōu)弧
于點(diǎn)P,Q,且點(diǎn)P, Q在AB異側(cè),連接OP.
(1)求證:AP=BQ;
(2)當(dāng)BQ=4
時(shí),求扇形COQ的面積及
的長(結(jié)果保留π);
(3)若△APO的外心在扇形COD的內(nèi)部,請直接寫出OC的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2015年投入教育經(jīng)費(fèi)2900萬元,2017年投入教育經(jīng)費(fèi)3509萬元.
(1)求2015年至2017年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長率;
(2)按照義務(wù)教育法規(guī)定,教育經(jīng)費(fèi)的投入不低于國民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國民生產(chǎn)總值的情況,該地區(qū)到2019年需投入教育經(jīng)費(fèi)4250萬元.如果按(1)中教育經(jīng)費(fèi)投入的增長率,到2019年該地區(qū)投入的教育經(jīng)費(fèi)是否能達(dá)到4250萬元?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中(請補(bǔ)畫出必要的圖形),O為坐標(biāo)原點(diǎn),直線y= -2x+4與x、y軸分別交于A、B兩點(diǎn),過線段OA的中點(diǎn)C作x軸的垂線l,分別與直線AB交于點(diǎn)D,與直線y=x+n交于點(diǎn)P。
(1)直接寫出點(diǎn)A、B、C、D的坐標(biāo):A( ),B( ),C( ),D( )
(2)若△APD的面積等于1,求點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及 k 值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C,D是半圓O上的兩點(diǎn),OD∥BC,OD與AC交于點(diǎn)E.
(1)若∠D=70°,求∠CAD的度數(shù);
(2)若AC=8,DE=2,求AB的長.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com