【題目】為了維護國家主權和海洋權利,我國海監部門對中國海域實現常態化管理.某日,我國海監船在某海島附近的海域執行巡邏任務.如圖,此時海監船位于海島P的北偏東30°方向,距離海島100海里的A處,它沿正南方向航行一段時間后,到達位于海島P的南偏東45°方向的B處,求海監船航行了多少海里(結果保留根號)?
![]()
【答案】輪船航行的距離AB約為193.2海里.
【解析】
過點P作PC⊥AB于C點,則線段PC的長度即為海監船與燈塔P的最近距離.解等腰直角三角形APC,即可求出PC的長度;海監船航行的路程即為AB的長度.先解Rt△PCB,求出BC的長,再得出AC=PC,則AB=AC+BC.
過點P作PC⊥AB于C點,則線段PC的長度即為海監船與燈塔P的最近距離.
![]()
由題意,得∠APC=90°﹣45°=45°,∠B=30°,AP=100海里.
在Rt△APC中,∵∠ACP=90°,∠APC=45°,
∴PC=AC=
AP=50
海里.
在Rt△PCB中,∵∠BCP=90°,∠B=30°,PC=50
海里,
∴BC=
PC=50
海里,
∴AB=AC+BC=50
+50
=50(
+
)≈50(1.414+2.449)≈193.2(海里),
答:輪船航行的距離AB約為193.2海里.
科目:初中數學 來源: 題型:
【題目】放學后,小剛和同學邊聊邊往家走,突然想起今天是媽媽的生日,趕緊加快速度,跑步回家.小剛離家的距離s(m)和放學后的時間t(min)之間的關系如圖所示,給出下列結論:①小剛邊走邊聊階段的行走速度是125m/min;②小剛家離學校的距離是1000m;③小剛回到家時已放學10min;④小剛從學校回到家的平均速度是100m/min;其中正確的個數為是( )
![]()
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將△ABC紙片的一角沿DE向下翻折,使點A落在BC邊上,且DE∥BC,如圖所示,則下列結論不成立的是( )
![]()
A. ∠AED=∠BB. AD:AB=DE:BC
C. DE=
BCD. △ADB是等腰三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB<AC,M是BC邊的中點,MN⊥BC交AC于點N,動點P在線段BA上以每秒
cm的速度由點B向點A運動.同時,動點Q在線段AC上由點N向點C運動,且始終保持MQ⊥MP.一個點到終點時兩個點同時停止運動,設運動的時間為t秒(t>0).
(1)求證:△PBM∽△QNM.
(2)若∠ABC=60°,AB=4
cm,
①求動點Q的運動速度;
②設△APQ的面積為S(cm2),求S與t的等量關系式(不必寫出t的取值范圍).
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為
,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
![]()
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得
≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得
利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為![]()
![]()
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB,FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某八年級計劃用360元購買筆記本獎勵優秀學生,在購買時發現,每本筆記本可以打九折,結果買得的筆記本比打折前多10本.
(1)請利用分式方程求出每本筆記本的原來標價;
(2)恰逢文具店周年志慶,每本筆記本可以按原價打8折,這樣該校最多可購入本筆記本?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,點P從A點出發,以1cm/s的速度向B點移動,點Q從B點出發,以2cm/s的速度向C點移動.如果P、Q兩點同時出發,經過幾秒后△PBQ的面積等于4cm2?
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com