【題目】有
張卡片分別寫有數字
,從中任取
張,可排出不同的四位數個數為( )
A.
B.
C.
D. ![]()
【答案】C
【解析】分析:根據題意,分四種情況討論:①取出四張卡片中沒有重復數字,即取出四張卡片中的數字為1,2,3,4;②取出四張卡片中4有2個重復數字,則2個重復的數字為1或2;③若取出的四張卡片為2張1和2張2;④取出四張卡片中有3個重復數字,則重復數字為1,分別求出每種情況下可以排出四位數的個數,由分類計數原理計算可得結論.
詳解:根據題意,分四種情況討論:
①取出四張卡片中沒有重復數字,即取出四張卡片中的數字為1,2,3,4;
此時有
種順序,可以排出24個四位數.
②取出四張卡片中4有2個重復數字,則2個重復的數字為1或2,
若重復的數字為1,在2,3,4中取出2個,有
種取法,安排在四個位置中,
有
種情況,剩余位置安排數字1,可以排出
個四位數
同理,若重復的數字為2,也可以排出36個重復數字;
③若取出的四張卡片為2張1和2張2,在4個位置安排兩個1,有
種情況,
剩余位置安排兩個2,則可以排出
個四位數;
④取出四張卡片中有3個重復數字,則重復數字為1,在2,3,4中取出1個卡片,
有
種取法,安排在四個位置中,有
種情況,剩余位置安排1,
可以排出
個四位數,則一共有
個四位數,故選C.
科目:高中數學 來源: 題型:
【題目】現有4個人去參加娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為1或2的人去參加甲游戲,擲出點數大于2的人去參加乙游戲.
(1)求這4個人中恰有2人去參加甲游戲的概率;
(2)求這4個人中去參加甲游戲的人數大于去參加乙游戲的人數的概率;
(3)用X,Y分別表示這4個人中去參加甲、乙游戲的人數,記ξ=|X﹣Y|,求隨機變量ξ的分布列與數學期望Eξ.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記[x]為不超過實數x的最大整數,例如,[2]=2,[1.5]=1,[﹣0.3]=﹣1.設a為正整數,數列{xn}滿足x1=a,
,現有下列命題:
①當a=5時,數列{xn}的前3項依次為5,3,2;
②對數列{xn}都存在正整數k,當n≥k時總有xn=xk;
③當n≥1時,
;
④對某個正整數k,若xk+1≥xk , 則
.
其中的真命題有 . (寫出所有真命題的編號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
,
的線性回歸直線方程為
,且
,
之間的一組相關數據如下表所示,則下列說法錯誤的為
![]()
A.變量
,
之間呈現正相關關系B.可以預測,當
時,![]()
C.
D.由表格數據可知,該回歸直線必過點![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC. ![]()
(1)求直線PC與平面ABC所成角的大小;
(2)求二面角B﹣AP﹣C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“節(jié)約用水”自古以來就是中華民族的優(yōu)良傳統.某市統計局調查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如下圖所示.將月用水量落入各組的頻率視為概率,并假設每天的用水量相互獨立.
![]()
(l)求在未來連續(xù)3個月里,有連續(xù)2個月的月用水量都不低于12噸且另1個月的月用水量低于4噸的概率;
(2)用
表示在未來3個月里月用水量不低于12噸的月數,求隨杌變量
的分布列及數學期望
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com