【題目】已知
,函數(shù)![]()
(1)討論函數(shù)
的單調(diào)性;
(2)若
是
的極值點(diǎn),且曲線
在兩點(diǎn)
,
處的切線互相平行,這兩條切線在y軸上的截距分別為
、
,求
的取值范圍.
【答案】(1)見解析;(2)![]()
【解析】
(1)根據(jù)導(dǎo)數(shù)和函數(shù)的關(guān)系即可求出函數(shù)的單調(diào)區(qū)間,
(2)由x=2是f(x)的極值點(diǎn),以及導(dǎo)數(shù)的幾何意義,可求出相對(duì)應(yīng)的切線方程,根據(jù)切線平行可得
,同理,
.求出b1﹣b2,再構(gòu)造函數(shù),
利用導(dǎo)數(shù),即可求出b1﹣b2的取值范圍
(1)
,
①當(dāng)a≤0時(shí),f'(x)<0在x∈(0,+∞)上恒成立,∴f(x)在(0,+∞)上單調(diào)遞減;
②當(dāng)a>0時(shí),
時(shí)f'(x)<0,
時(shí),f'(x)>0,
即f(x)在
上單調(diào)遞減,在
單調(diào)遞增;
(2)∵x=2是f(x)的極值點(diǎn),∴由(1)可知
,
∴a=1,設(shè)在P(x1,f(x1))處的切線方程為
,
在Q(x2,f(x2))處的切線方程為![]()
∴若這兩條切線互相平行,則
,∴![]()
∵
,且0<x1<x2<6,∴
,∴
,
∴x1∈(3,4)令x=0,則
,
同理,
.
【解法一】
∵
,∴![]()
設(shè)
,![]()
∴![]()
∴g(x)在區(qū)間
上單調(diào)遞減,∴![]()
即b1-b2的取值范圍是
.
【解法二】
∵
,
∴![]()
令
,其中x∈(3,4)
∴![]()
∴函數(shù)g(x)在區(qū)間(3,4)上單調(diào)遞增,∴![]()
∴b1-b2的取值范圍是
.
【解法三】
∵x1x2=2(x1+x2),
∴![]()
設(shè)
,則![]()
∵
,∴g'(x)>0,
∴函數(shù)g(x)在區(qū)間
上單調(diào)遞增,
∴
,∴b1-b2的取值范圍是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,長(zhǎng)方體ABCD–A1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BE⊥EC1.
![]()
(1)證明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在菱形
中,
,
,
是
的中點(diǎn),以
為折痕,將
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,且平面
平面
,如圖2.
![]()
(1)求證:
;
(2)若
為
的中點(diǎn),求四面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓![]()
的離心率
,且圓
經(jīng)過(guò)橢圓C的上、下頂點(diǎn).
(1)求橢圓C的方程;
(2)若直線l與橢圓C相切,且與橢圓
相交于M,N兩點(diǎn),證明:
的面積為定值(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形
中,
,
為線段
的中點(diǎn)(如圖1).將
沿
折起到
的位置,使得平面
平面
,
為線段
的中點(diǎn)(如圖2).
![]()
(Ⅰ)求證:
;
(Ⅱ)求證:
平面
;
(Ⅲ)當(dāng)四棱錐
的體積為
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線
與拋物線
(常數(shù)
)相交于不同的兩點(diǎn)
、
,且
(
為定值),線段
的中點(diǎn)為
,與直線
平行的切線的切點(diǎn)為
(不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).
![]()
(1)用
、
表示出
點(diǎn)、
點(diǎn)的坐標(biāo),并證明
垂直于
軸;
(2)求
的面積,證明
的面積與
、
無(wú)關(guān),只與
有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連
、
,再作與
、
平行的切線,切點(diǎn)分別為
、
,小張馬上寫出了
、
的面積,由此小張求出了直線
與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說(shuō)出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校藝術(shù)專業(yè)300名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
![]()
(1)從總體的300名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y2=2px的焦點(diǎn)為F,準(zhǔn)線方程是x=﹣1.
(I)求此拋物線的方程;
(Ⅱ)設(shè)點(diǎn)M在此拋物線上,且|MF|=3,若O為坐標(biāo)原點(diǎn),求△OFM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列有關(guān)光線的入射與反射的兩個(gè)事實(shí)現(xiàn)象:現(xiàn)象(1):光線經(jīng)平面鏡反射滿足入射角與反射角相等(如圖);現(xiàn)象(2);光線從橢圓的一個(gè)焦點(diǎn)出發(fā)經(jīng)橢圓反射后通過(guò)另一個(gè)焦點(diǎn)(如圖).試結(jié)合,上述事實(shí)現(xiàn)象完成下列問(wèn)題:
![]()
![]()
(Ⅰ)有一橢圓型臺(tái)球桌,長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b.將一放置于焦點(diǎn)處的桌球擊出.經(jīng)過(guò)球桌邊緣的反射(假設(shè)球的反射充全符合現(xiàn)象(2)),后第一次返回到該焦點(diǎn)時(shí)所經(jīng)過(guò)的路程記為S,求S的值(用a,b表示);
(Ⅱ)結(jié)論:橢圓
上任點(diǎn)P(x0,y0)處的切線的方程為
.記橢圓C的方程為C:
,在直線x=4上任一點(diǎn)M向橢圓C引切線,切點(diǎn)分別為A,B.求證:直線lAB恒過(guò)定點(diǎn):
(Ⅲ)過(guò)點(diǎn)T(1,0)的直線l(直線l斜率不為0)與橢圓C:
交于P、Q兩點(diǎn),是否存在定點(diǎn)S(s,0),使得直線SP與SQ斜率之積為定值,若存在求出S坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com