【題目】某技術(shù)人員在某基地培育了一種植物,一年后,該技術(shù)人員從中隨機(jī)抽取了部分這種植物的高度(單位:厘米)作為樣本(樣本容量為
)進(jìn)行統(tǒng)計(jì),繪制了如下頻率分布直方圖,已知抽取的樣本植物高度在
內(nèi)的植物有8株,在
內(nèi)的植物有2株.
![]()
(Ⅰ)求樣本容量
和頻率分布直方圖中的
,
的值;
(Ⅱ)在選取的樣本中,從高度在
內(nèi)的植物中隨機(jī)抽取3株,設(shè)隨機(jī)變量
表示所抽取的3株高度在
內(nèi)的株數(shù),求隨機(jī)變量
的分布列及數(shù)學(xué)期望;
(Ⅲ)據(jù)市場(chǎng)調(diào)研,高度在
內(nèi)的該植物最受市場(chǎng)追捧.老王準(zhǔn)備前往該基地隨機(jī)購(gòu)買(mǎi)該植物50株.現(xiàn)有兩種購(gòu)買(mǎi)方案,方案一:按照該植物的不同高度來(lái)付費(fèi),其中高度在
內(nèi)的每株10元,其余高度每株5元;方案二:按照該植物的株數(shù)來(lái)付費(fèi),每株6元.請(qǐng)你根據(jù)該基地該植物樣本的統(tǒng)計(jì)分析結(jié)果為決策依據(jù),預(yù)測(cè)老王采取哪種付費(fèi)方式更便宜?
【答案】(Ⅰ)
,
,
;(Ⅱ)分布列見(jiàn)解析,
;(Ⅲ)方案一付費(fèi)更便宜.
【解析】
(Ⅰ) 由題目條件及頻率分布直方圖能求出樣本容量n和頻率分布直方圖中的x,y.
(Ⅱ) 由題意可知,高度在[80,90)內(nèi)的株數(shù)為5,高度在[90,100]內(nèi)的株數(shù)為2,共7株.抽取的3株中高度在[80,90)內(nèi)的株數(shù)X的可能取值為1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
(Ⅲ)根據(jù)(Ⅰ)所得結(jié)論,分別計(jì)算按照方案一購(gòu)買(mǎi)應(yīng)付費(fèi)和按照方案二購(gòu)買(mǎi)應(yīng)付費(fèi),比較結(jié)果即可得按照方案一付費(fèi)更便宜.
(Ⅰ) 由題意可知,
樣本容量
,
,
.
(Ⅱ)由題意可知,高度在[80,90)內(nèi)的株數(shù)為5,高度在[90,100]內(nèi)的株數(shù)為2,
共7株.抽取的3株中高度在[80,90)內(nèi)的株數(shù)X的可能取值為1,2,3,
則
,
,
,
∴X的分布列為:
X | 1 | 2 | 3 |
P |
|
|
|
故
.
(Ⅲ)根據(jù)(Ⅰ)所得結(jié)論,高度在
內(nèi)的概率為
,
按照方案一購(gòu)買(mǎi)應(yīng)付費(fèi)
元,
按照方案二購(gòu)買(mǎi)應(yīng)付費(fèi)
元,
故按照方案一付費(fèi)更便宜.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市
戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
![]()
(1)求直方圖中
的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為
,
,
,
的四組用戶中,用分層抽樣的方法抽取
戶居民,則月平均用電量在
的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線
上動(dòng)點(diǎn)
與定點(diǎn)
的距離和它到定直線
的距離的比是常數(shù)
.若過(guò)
的動(dòng)直線
與曲線
相交于
兩點(diǎn).
(1)判斷曲線
的名稱并寫(xiě)出它的標(biāo)準(zhǔn)方程;
(2)是否存在與點(diǎn)
不同的定點(diǎn)
,使得
恒成立?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
為坐標(biāo)原點(diǎn),點(diǎn)
,
,
,動(dòng)點(diǎn)
滿足
,點(diǎn)
為線段
的中點(diǎn),拋物線
:
上點(diǎn)
的縱坐標(biāo)為
,
.
(1)求動(dòng)點(diǎn)
的軌跡曲線
的標(biāo)準(zhǔn)方程及拋物線
的標(biāo)準(zhǔn)方程;
(2)若拋物線
的準(zhǔn)線上一點(diǎn)
滿足
,試判斷
是否為定值,若是,求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系
,直線
過(guò)點(diǎn)
,且傾斜角為
,以
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求直線
的參數(shù)方程和圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)直線
與圓
交于
、
兩點(diǎn),若
,求直線
的傾斜角的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(1)若
在
上為單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若
,且
,求證:對(duì)定義域內(nèi)的任意實(shí)數(shù)
,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求
在
上的最值;
(2)若
,當(dāng)
有兩個(gè)極值點(diǎn)
時(shí),總有
,求此時(shí)實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一根長(zhǎng)為
分米的鐵絲制作一個(gè)長(zhǎng)方體框架(由12條棱組成),使得長(zhǎng)方體框架的底面長(zhǎng)是寬的
倍.在制作時(shí)鐵絲恰好全部用完且損耗忽略不計(jì).現(xiàn)設(shè)該框架的底面寬是
分米,用
表示該長(zhǎng)方體框架所占的空間體積(即長(zhǎng)方體的體積).
(1)試求函數(shù)
的解析式及其定義域;
(2)當(dāng)該框架的底面寬
取何值時(shí),長(zhǎng)方體框架所占的空間體積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了提高利潤(rùn),從2014年至2018年每年對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)進(jìn)行投資,投資金額與年利潤(rùn)增長(zhǎng)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
投資金額x(萬(wàn)元) | 5 | 5.5 | 6 | 6.5 | 7 |
年利潤(rùn)增長(zhǎng)y(萬(wàn)元) | 7.5 | 8 | 9 | 10 | 11.5 |
(1)請(qǐng)用最小二乘法求出y關(guān)于x的回歸直線方程;
(2)如果2020年該公司計(jì)劃對(duì)生產(chǎn)環(huán)節(jié)的改進(jìn)的投資金額為8萬(wàn)元,估計(jì)該公司在該年的年利潤(rùn)增長(zhǎng)為多少?
參考公式:
,
參考數(shù)據(jù):
,![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com