【題目】某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查,A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:?jiǎn)挝皇侨f(wàn)元).
![]()
![]()
圖1圖2
(1)分別將A、B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),寫(xiě)出它們的函數(shù)關(guān)系式;
(2)現(xiàn)企業(yè)有20萬(wàn)元資金全部投入A、B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這20萬(wàn)元資金,能使獲得的利潤(rùn)最大,其最大利潤(rùn)是多少萬(wàn)元?
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
圖象過(guò)點(diǎn)
,且在該點(diǎn)處的切線與直線
垂直.
(1)求實(shí)數(shù)
,
的值;
(2)對(duì)任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)
,
,使得
是以
為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在
軸上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)均相等的正三棱柱ABCA1B1C1中,D為BB1的中點(diǎn),F(xiàn)在AC1上,且DF⊥AC1,則下述結(jié)論:
![]()
①AC1⊥BC;
②AF=FC1;
③平面DAC1⊥平面ACC1A1,其中正確的個(gè)數(shù)為( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
![]()
(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚?xiě)
列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
參考公式與臨界值表:
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分16分)已知
是虛數(shù),
是實(shí)數(shù).
(1)求
為何值時(shí),
有最小值,并求出|
的最小值;
(2)設(shè)
,求證:
為純虛數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
:
過(guò)橢圓
:
的短軸端點(diǎn),
分別是圓
與橢圓
上任意兩點(diǎn),且線段
長(zhǎng)度的最大值為3.
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
作圓
的一條切線交橢圓
于
兩點(diǎn),求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的圖象在
處的切線方程;
(2)若函數(shù)
在
上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)是否存在實(shí)數(shù)
,使得對(duì)任意的
,都有函數(shù)
的圖象在
的圖象的下方?若存在,請(qǐng)求出最大整數(shù)
的值;若不存在,請(qǐng)說(shuō)理由.
(參考數(shù)據(jù):
,
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的
,
,
,
四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是
或
作品獲得一等獎(jiǎng)”;
乙說(shuō):“
作品獲得一等獎(jiǎng)”;
丙說(shuō):“
,
兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是
作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com