【題目】直線
與拋物線![]()
相交于
,
兩點(diǎn),且
,若
,
到
軸距離的乘積為
.
(1)求
的方程;
(2)設(shè)點(diǎn)
為拋物線
的焦點(diǎn),當(dāng)
面積最小時(shí),求直線
的方程.
【答案】(1)
;(2)![]()
【解析】
(1)設(shè)出兩點(diǎn)的坐標(biāo),由距離之積為16,可得
.利用向量的數(shù)量積坐標(biāo)運(yùn)算,將
轉(zhuǎn)化為
.再利用兩點(diǎn)均在拋物線上,即可求得p的值,從而求出拋物線的方程;
(2)設(shè)出直線l的方程,代入拋物線方程,由韋達(dá)定理發(fā)現(xiàn)直線l恒過(guò)定點(diǎn)
,將
面積用參數(shù)t表示,求出其最值,并得出此時(shí)的直線方程.
解:(1)由題設(shè)
,![]()
因?yàn)?/span>
,
到
軸的距離的積為
,所以
,
又因?yàn)?/span>
,
,
,![]()
所以拋物線
的方程為
.
(2)因?yàn)橹本
與拋物線兩個(gè)公共點(diǎn),所以
的斜率不為
,
所以設(shè)![]()
聯(lián)立
,得
,
即
,
,
![]()
即直線
恒過(guò)定點(diǎn)
,
所以
,
當(dāng)
時(shí),
面積取得最小值
,此時(shí)
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
.
(1)若
,求
的單調(diào)區(qū)間;
(2)討論
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
為矩形,
是以
為直角的等腰直角三角形,平面
平面
.
![]()
(Ⅰ)證明:平面
平面
;
(Ⅱ)
為直線
的中點(diǎn),且
,求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個(gè)人組成的解密團(tuán)隊(duì)參加一項(xiàng)解密挑戰(zhàn)活動(dòng),規(guī)則是由密碼專家給出題目,然后由
個(gè)人依次出場(chǎng)解密,每人限定時(shí)間是
分鐘內(nèi),否則派下一個(gè)人.
個(gè)人中只要有一人解密正確,則認(rèn)為該團(tuán)隊(duì)挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測(cè)試情況,抽取了甲
次的測(cè)試記錄,繪制了如下的頻率分布直方圖.
![]()
(1)若甲解密成功所需時(shí)間的中位數(shù)為
,求
、
的值,并求出甲在
分鐘內(nèi)解密成功的頻率;
(2)在“挑戰(zhàn)不可能”節(jié)目上由于來(lái)自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為
,其中
表示第
個(gè)出場(chǎng)選手解密成功的概率,并且
定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨(dú)立.
①求該團(tuán)隊(duì)挑戰(zhàn)成功的概率;
②該團(tuán)隊(duì)以
從小到大的順序按排甲、乙、丙三個(gè)人上場(chǎng)解密,求團(tuán)隊(duì)挑戰(zhàn)成功所需派出的人員數(shù)目
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在三棱柱
中,
為
邊的中點(diǎn).
.
![]()
(1)證明:
平面
;
(2)若
,
為
中點(diǎn)且
,
,
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰梯形
中(如圖1),
,
,
為線段
的中點(diǎn),
、
為線段
上的點(diǎn),
,現(xiàn)將四邊形
沿
折起(如圖2)
![]()
(1)求證:
平面
;
(2)在圖2中,若
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,已知圓C:
,橢圓E:
(
)的右頂點(diǎn)A在圓C上,右準(zhǔn)線與圓C相切.
![]()
(1)求橢圓E的方程;
(2)設(shè)過(guò)點(diǎn)A的直線l與圓C相交于另一點(diǎn)M,與橢圓E相交于另一點(diǎn)N.當(dāng)
時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
在
上的最大值為
.
(1)求a的值;
(2)求
在區(qū)間
上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動(dòng)新能源汽車產(chǎn)業(yè)的迅速發(fā)展,下表是近幾年我國(guó)某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計(jì)表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
銷量(萬(wàn)臺(tái)) | 8 | 10 | 13 | 25 | 24 |
某機(jī)構(gòu)調(diào)查了該地區(qū)30位購(gòu)車車主的性別與購(gòu)車種類情況,得到的部分?jǐn)?shù)據(jù)如下表所示:
購(gòu)置傳統(tǒng)燃油車 | 購(gòu)置新能源車 | 總計(jì) | |
男性車主 | 6 | 24 | |
女性車主 | 2 | ||
總計(jì) | 30 |
(1)求新能源乘用車的銷量
關(guān)于年份
的線性相關(guān)系數(shù)
,并判斷
與
是否線性相關(guān);
(2)請(qǐng)將上述
列聯(lián)表補(bǔ)充完整,并判斷是否有
的把握認(rèn)為購(gòu)車車主是否購(gòu)置新能源乘用車與性別有關(guān);
參考公式:
,
,其中
.
,若
,則可判斷
與
線性相關(guān).
附表:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com