【題目】已知函數(shù)
,
既存在極大值,又存在極小值.
(1)求實(shí)數(shù)
的取值范圍;
(2)當(dāng)
時(shí),
,
分別為
的極大值點(diǎn)和極小值點(diǎn).且
,求實(shí)數(shù)
的取值范圍.
【答案】(1)
;(2)
.
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的單調(diào)性確定
的范圍即可;
(2)求出函數(shù)的極值點(diǎn),問題轉(zhuǎn)化為
,設(shè)
,根據(jù)函數(shù)的單調(diào)性確定
的范圍即可.
解:(1)由
得
,
即
,
由題意,若
存在極大值和極小值,則
必有兩個(gè)不相等的實(shí)數(shù)根,
由
得
,所以
必有一個(gè)非零實(shí)數(shù)根,
∴
,
,∴
且
,∴
或
.
綜上,實(shí)數(shù)
的取值范圍為
.
(2)當(dāng)
時(shí),由(1)可知
的極大值點(diǎn)為
,極小值點(diǎn)為
,
此時(shí)
,
,
依題意得
對(duì)任意
恒成立,
由于此時(shí)
,所以
;
所以
,即
,
設(shè)
,
,則
![]()
,
令
,判別式
.
①當(dāng)
時(shí),
,所以
,
在
單調(diào)遞增,
所以
,即
,符合題意;
②當(dāng)
時(shí),
,設(shè)
的兩根為
,
,且
,
則
,
,因此
,
則當(dāng)
時(shí),
,
在
單調(diào)遞減,
所以當(dāng)
時(shí),
,即
,
所以
,矛盾,不合題意;
綜上,
的取值范圍是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)
.
(1)當(dāng)
時(shí),求
的極值;
(2)當(dāng)
時(shí),函數(shù)
的圖象與函數(shù)
的圖象有唯一的交點(diǎn),求
的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“挑戰(zhàn)不可能”的電視節(jié)目上,甲、乙、丙三個(gè)人組成的解密團(tuán)隊(duì)參加一項(xiàng)解密挑戰(zhàn)活動(dòng),規(guī)則是由密碼專家給出題目,然后由3個(gè)人依次出場(chǎng)解密,每人限定時(shí)間是1分鐘內(nèi),否則派下一個(gè)人.3個(gè)人中只要有一人解密正確,則認(rèn)為該團(tuán)隊(duì)挑戰(zhàn)成功,否則挑戰(zhàn)失敗.根據(jù)甲以往解密測(cè)試情況,抽取了甲100次的測(cè)試記錄,繪制了如圖所示的頻率分布直方圖.
![]()
(1)若甲解密成功所需時(shí)間的中位數(shù)為47,求
、
的值,并求出甲在1分鐘內(nèi)解密成功的頻率;
(2)在“挑戰(zhàn)不可能”節(jié)目上由于來(lái)自各方及自身的心理壓力,甲,乙,丙解密成功的概率分別為
,其中
表示第
個(gè)出場(chǎng)選手解密成功的概率,并且
定義為甲抽樣中解密成功的頻率代替,各人是否解密成功相互獨(dú)立.
①求該團(tuán)隊(duì)挑戰(zhàn)成功的概率;
②該團(tuán)隊(duì)以
從小到大的順序按排甲、乙、丙三個(gè)人上場(chǎng)解密,求團(tuán)隊(duì)挑戰(zhàn)成功所需派出的人數(shù)
的可能值及其概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對(duì)任意n∈N*,都有bn+
t≤t2,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在①
,②
,③
這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,并解答.
已知等差數(shù)列
的公差為
,等差數(shù)列
的公差為
.設(shè)
分別是數(shù)列
的前
項(xiàng)和,且
, ,
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
,令![]()
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于
的不等式
恒成立,求整數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=f(x),x∈[1,+∞),數(shù)列{an}滿足
,
①函數(shù)f(x)是增函數(shù);
②數(shù)列{an}是遞增數(shù)列.
寫出一個(gè)滿足①的函數(shù)f(x)的解析式______.
寫出一個(gè)滿足②但不滿足①的函數(shù)f(x)的解析式______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:
的焦點(diǎn)為F,Q是拋物線上的一點(diǎn),
.
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點(diǎn)
作直線l與拋物線C交于M,N兩點(diǎn),在x軸上是否存在一點(diǎn)A,使得x軸平分
?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com