【題目】
,
為兩個定點,
是
的一條切線,若過
兩點的拋物線以直線
為準(zhǔn)線,則該拋物線的焦點的軌跡方程是 .
【答案】![]()
【解析】根據(jù)題意畫出圖像,任意畫出一條切線,作AB垂直于切線于CD兩點,設(shè)拋物線的焦點為F點,根據(jù)拋物線的定義得到
,
,因為O為AB的中點,作OG垂直于切線于點G,OG為梯形ABCE的中位線,故得到|BF|+|AF|=2|OG|=8,故根據(jù)橢圓的定義得到軌跡是以AB為焦點的橢圓長半軸為4,c=2,故得到軌跡方程為
,由條件知焦點一定不能落在x軸上故需要去掉兩點。
所以答案是:
。
【考點精析】利用橢圓的概念和橢圓的標(biāo)準(zhǔn)方程對題目進行判斷即可得到答案,需要熟知平面內(nèi)與兩個定點
,
的距離之和等于常數(shù)(大于
)的點的軌跡稱為橢圓,這兩個定點稱為橢圓的焦點,兩焦點的距離稱為橢圓的焦距;橢圓標(biāo)準(zhǔn)方程焦點在x軸:
,焦點在y軸:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
與y軸交于O,A兩點,圓C2過O,A兩點,且直線C2O與圓C1相切;
(1)求圓C2的方程;
(2)若圓C2上一動點M,直線MO與圓C1的另一交點為N,在平面內(nèi)是否存在定點P使得PM=PN始終成立,若存在求出定點坐標(biāo),若不存在,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:實數(shù)x滿足
,其中
;和命題q:實數(shù)x滿足
.
(1)若a=1且p∧q為真,求實數(shù)x的取值范圍;
(2)若-p是-q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),圖中圓弧所在圓的圓心為點C,半徑為
,且點P在圖中陰影部分(包括邊界)運動.若
,其中
,則
的取值范圍是( )![]()
A.[2,3+
]
B.[2,3+
]
C.[3-
, 3+
]
D.[3-
, 3+
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ![]()
(1)若對
,f(x)
恒成立,求a的取值范圍;
(2)已知常數(shù)a
R,解關(guān)于x的不等式f(x)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,|an+1-an|=pn,n∈N*,Sn為數(shù)列{an}的前n項和.
(1)若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值;
(2)若p=
,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項公式;
(3)在(2)的條件下,令cn=n(an+1-an),求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①“四邊相等的四邊形是正方形”的否命題;
②“梯形不是平行四邊形”的逆否命題;
③“若
,則
”的逆命題.
其中真命題是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過
軸上動點
引拋物線
的兩條切線
、
,
、
為切點,設(shè)切線
、
的斜率分別為
和
.![]()
(Ⅰ)求證:
;
(Ⅱ)求證:直線
恒過定點,并求出此定點坐標(biāo);
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com