【題目】已知向量
= (1,2sinθ),
= (sin(θ+
),1),θ
R。
(1) 若
⊥
,求 tanθ的值;
(2) 若
∥
,且 θ
(0,
),求 θ的值
【答案】(1)tanθ=-
;(2)θ=
.
【解析】
(1)利用兩個向量垂直的坐標表示,列出方程,化簡可求得
的值.(2)利用兩個向量平行的坐標表示,列出方程,化簡可求得
的值.
(1)依題意,得:![]()
=0,即
sin(θ+
)+2sinθ=0,展開,得:
sinθcos
+cosθsin
+2sinθ=0,
化簡,得:
sinθ+
cosθ=0,解得:tanθ=-![]()
(2)因為
∥
,所以,2sinθsin(θ+
)=1,展開得:
2sinθ(sinθcos
+cosθsin
)=1,
即:2sin2θ+2
sinθcosθ=2,
即:1-cos2θ+
sin2θ=2,
化為:sin(2θ-
)=
,因為θ
(0,
),所以,2θ-
(
),
所以,2θ-
=
,解得:θ=![]()
科目:高中數學 來源: 題型:
【題目】峰谷電是目前在城市居民當中開展的一種電價類別.它是將一天24小時劃分成兩個時間段,把8:00—22:00共14小時稱為峰段,執行峰電價,即電價上調;22:00—次日8:00共10個小時稱為谷段,執行谷電價,即電價下調.為了進一步了解民眾對峰谷電價的使用情況,從某市一小區隨機抽取了50 戶住戶進行夏季用電情況調查,各戶月平均用電量以
,
,
,
,
,
(單位:度)分組的頻率分布直方圖如下圖:
![]()
若將小區月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價的戶數如下表:
月平均用電量(度) |
|
|
|
|
|
|
使用峰谷電價的戶數 | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估計所抽取的 50戶的月均用電量的眾數和平均數(同一組中的數據用該組區間的中點值作代表);
(2)(
)將“一般用戶”和“大用戶”的戶數填入下面
的列聯表:
一般用戶 | 大用戶 | |
使用峰谷電價的用戶 | ||
不使用峰谷電價的用戶 |
(
)根據(
)中的列聯表,能否有
的把握認為 “用電量的高低”與“使用峰谷電價”有關?
| 0.025 | 0.010 | 0.001 |
| 5.024 | 6.635 | 10.828 |
附:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電視臺為宣傳本市,隨機對本市內
歲的人群抽取了
人,回答問題“本市內著名旅游景點有哪些” ,統計結果如圖表所示.
組號 | 分組 | 回答正確的人數 | 回答正確的人數占本組的頻率 |
第1組 | [15,25) | a | 0.5 |
第2組 | [25,35) | 18 | x |
第3組 | [35,45) | b | 0.9 |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 | y |
![]()
(1)分別求出
的值;
(2)根據頻率分布直方圖估計這組數據的中位數(保留小數點后兩位)和平均數;
(3)若第1組回答正確的人員中,有2名女性,其余為男性,現從中隨機抽取2人,求至少抽中1名女性的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形
是等腰梯形,
,
,
平面
,
,
.
![]()
(
)求證:
平面
.
(
)求二面角
的余弦值.
(
)在線段
(含端點)上,是否存在一點
,使得
平面
,若存在,求出
的值;若不存在,請說明理由.
【答案】(
)見解析;(
)
;(
)存在, ![]()
【解析】試題分析:(1)由題意,證明
,
,證明
面
;(2)建立空間直角坐標系,求平面
和平面
的法向量,解得余弦值為
;(3)得
,
,所以
,
,所以存在
為
中點.
試題解析:
(
)∵
,
,∴
.
∵
,∴
,∴
,
.
∵
,且
,
、
面
,∴
面
.
(
)知
,∴
.
∵
面
,
,
,
兩兩垂直,以
為坐標原點,
以
,
,
為
,
,
軸建系.
設
,則
,
,
,
,
,
∴
,
.
設
的一個法向量為
,
∴
,取
,則
.
由于
是面
的法向量,
則
.
∵二面角
為銳二面角,∴余弦值為
.
(
)存在點
.
設
,
,
∴
,
,
,
∴
,
.
∵
面
,
.
若
面
,∴
,
∴
,
∴
,∴
,∴存在
為
中點.
![]()
【題型】解答題
【結束】
19
【題目】已知函數
.
(
)當
時,求此函數對應的曲線在
處的切線方程.
(
)求函數
的單調區間.
(
)對
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
為偶函數,且當
時,
.記
.給出下列關于函數
的說法:①當
時,
;②函數
為奇函數;③函數
在
上為增函數;④函數
的最小值為
,無最大值.其中正確的是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com