【題目】隨著我國(guó)經(jīng)濟(jì)實(shí)力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實(shí)現(xiàn)翻番.同時(shí)該家庭的消費(fèi)結(jié)構(gòu)隨之也發(fā)生了變化,現(xiàn)統(tǒng)計(jì)了該家庭這兩年不同品類(lèi)的消費(fèi)額占全年總收入的比例,得到了如下折線(xiàn)圖:
![]()
則下列結(jié)論中正確的是( )
A. 該家庭2018年食品的消費(fèi)額是2014年食品的消費(fèi)額的一半
B. 該家庭2018年教育醫(yī)療的消費(fèi)額與2014年教育醫(yī)療的消費(fèi)額相當(dāng)
C. 該家庭2018年休閑旅游的消費(fèi)額是2014年休閑旅游的消費(fèi)額的五倍
D. 該家庭2018年生活用品的消費(fèi)額是2014年生活用品的消費(fèi)額的兩倍
【答案】C
【解析】
2018年全年的收入與2014年全年的收入相比增加了一倍,所以在計(jì)算實(shí)際消費(fèi)額時(shí),需要對(duì)2018年的各項(xiàng)消費(fèi)占比乘以2,再與2014年各項(xiàng)消費(fèi)額相比.
選項(xiàng)A中,2018年食品消費(fèi)占0.2,2014年食品消費(fèi)占0.4,因2018年全年的收入與2014年全年的收入相比增加了一倍,所以?xún)赡甑氖称废M(fèi)額相當(dāng),故A項(xiàng)錯(cuò)誤.
選項(xiàng)B中,2018年教育醫(yī)療消費(fèi)占0.2,2014年教育醫(yī)療消費(fèi)占0.2,因2018年全年的收入與2014年全年的收入相比增加了一倍,所以2018年教育醫(yī)療消費(fèi)額是2014年的兩倍,故B項(xiàng)錯(cuò)誤.
選項(xiàng)C中,2018年休閑旅游消費(fèi)占0.25,2014年休閑旅游消費(fèi)占0.1,因2018年全年的收入與2014年全年的收入相比增加了一倍,所以2018年休閑旅游消費(fèi)消費(fèi)額是2014年的五倍,故C項(xiàng)正確.
選項(xiàng)D中,2018年生活用品消費(fèi)占0.3,2014年生活用品消費(fèi)占0.15,因2018年全年的收入與2014年全年的收入相比增加了一倍,所以2018年生活用品消費(fèi)額是2014年的四倍,故D項(xiàng)錯(cuò)誤.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩陣
(
)滿(mǎn)足
(I為單位矩陣).
(1)求m的值;
(2)設(shè)
,
.矩陣變換
可以將點(diǎn)P變換為點(diǎn)Q.當(dāng)點(diǎn)P在直線(xiàn)
上移動(dòng)時(shí),求經(jīng)過(guò)矩陣A變換后點(diǎn)Q的軌跡方程.
(3)是否存在這樣的直線(xiàn):它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在該直線(xiàn)上?若存在,求出所有這樣的直線(xiàn);若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
,拋物線(xiàn)
焦點(diǎn)均在x軸上,
的中心和
頂點(diǎn)均在原點(diǎn)O,從每條曲線(xiàn)上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中,則
的左焦點(diǎn)到
的準(zhǔn)線(xiàn)之間的距離為( )
| 3 | -2 | 4 |
|
|
| 0 | -4 |
|
A.
B.
C.1D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓
經(jīng)過(guò)點(diǎn)
,且離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過(guò)點(diǎn)
任作一條直線(xiàn)
與橢圓
交于不同的兩點(diǎn)
.在
軸上是否存在點(diǎn)
,使得
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,底而
為正方形,
底面
,
,點(diǎn)
為棱
的中點(diǎn),點(diǎn)
,
分別為棱
,
上的動(dòng)點(diǎn)(
,
與所在棱的端點(diǎn)不重合),且滿(mǎn)足
.
![]()
(1)證明:平面
平面
;
(2)當(dāng)三棱錐
的體積最大時(shí),求二面角
的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形
為正方形,
分別為
的中點(diǎn),以
為折痕把
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,且
.
(1)證明:平面
平面
;
(2)求
與平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某校新、老校區(qū)之間開(kāi)車(chē)單程所需時(shí)間為
,
只與道路暢通狀況有關(guān),對(duì)其容量為
的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如圖:
| 25 | 30 | 35 | 40 |
頻數(shù)(次) | 20 | 30 | 40 | 10 |
(1)求
的分布列與數(shù)學(xué)期望
;
(2)劉教授駕車(chē)從老校區(qū)出發(fā),前往新校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開(kāi)老校區(qū)到返回老校區(qū)共用時(shí)間不超過(guò)120分鐘的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,在四棱錐
中,
面
,
,
,
,
,
,
,
為
的中點(diǎn)。
(1)求證:
面
;
(2)線(xiàn)段
上是否存在一點(diǎn)
,滿(mǎn)足
?若存在,試求出二面角
的余弦值;若不存在,說(shuō)明理由。
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com