【題目】數(shù)學(xué)的對稱美在中國傳統(tǒng)文化中多有體現(xiàn),譬如如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的和諧美.如果能夠?qū)A的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)“,下列說法錯誤的是( )
![]()
A.對于任意一個圓,其“優(yōu)美函數(shù)“有無數(shù)個
B.
可以是某個圓的“優(yōu)美函數(shù)”
C.正弦函數(shù)
可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”
D.函數(shù)
是“優(yōu)美函數(shù)”的充要條件為函數(shù)
的圖象是中心對稱圖形
【答案】D
【解析】
利用“優(yōu)美函數(shù)”的定義判斷選項(xiàng)A,B,C正確,函數(shù)
的圖象是中心對稱圖形,則函數(shù)
是“優(yōu)美函數(shù)”,但是函數(shù)
是“優(yōu)美函數(shù)”時,圖象不一定是中心對稱圖形,舉出反例,可判斷選項(xiàng)D錯誤.
對于A:過圓心的直線都可以將圓的周長和面積同時平分,所以對于任意一個圓,其“優(yōu)美函數(shù)”有無數(shù)個,故選項(xiàng)A正確;
對于B:因?yàn)楹瘮?shù)
圖象關(guān)于原點(diǎn)成中心對稱,所以將圓的圓心放在原點(diǎn),則函數(shù)
是該圓的“優(yōu)美函數(shù)”,故選項(xiàng)B正確;
對于C:將圓的圓心放在正弦函數(shù)
的對稱中心上,則正弦函數(shù)
是該圓的“優(yōu)美函數(shù)”,故選項(xiàng)C正確;
對于D:函數(shù)
的圖象是中心對稱圖形,則函數(shù)
是“優(yōu)美函數(shù)”,但是函數(shù)
是“優(yōu)美函數(shù)”時,圖象不一定是中心對稱圖形,如圖所示:
,
所以函數(shù)
的圖象是中心對稱圖形是函數(shù)
是“優(yōu)美函數(shù)”的充分不必要條件,故選項(xiàng)D錯誤,
故選:D.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在
內(nèi),則為合格品,否則為不合格品.現(xiàn)統(tǒng)計(jì)得到相關(guān)統(tǒng)計(jì)情況如下:
甲套設(shè)備的樣本的頻率分布直方圖
![]()
乙套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 |
|
|
|
|
|
|
頻數(shù) | 1 | 6 | 19 | 18 | 5 | 1 |
(1)根據(jù)上述所得統(tǒng)計(jì)數(shù)據(jù),計(jì)算產(chǎn)品合格率,并對兩套設(shè)備的優(yōu)劣進(jìn)行比較;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān).
甲套設(shè)備 | 乙套設(shè)備 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
附:
| 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:
,其中![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓![]()
的左、右焦點(diǎn)分別為
,離心率為
,且
在橢圓
上運(yùn)動,當(dāng)點(diǎn)
恰好在直線l:
上時,
的面積為
.
(1)求橢圓
的方程;
(2)作與
平行的直線
,與橢圓交于
兩點(diǎn),且線段
的中點(diǎn)為
,若
的斜率分別為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】移動支付(支付寶支付,微信支付等)開創(chuàng)了新的支付方式,使電子貨幣開始普及,為了了解習(xí)慣使用移動支付方式是否與年齡有關(guān),對某地200人進(jìn)行了問卷調(diào)查,得到數(shù)據(jù)如下:60歲以上的人群中,習(xí)慣使用移動支付的人數(shù)為30人;60歲及以下的人群中,不習(xí)慣使用移動支付的人數(shù)為40人.已知在全部200人中,隨機(jī)抽取一人,抽到習(xí)慣使用移動支付的人的概率為0.6.
(1)完成如下的列聯(lián)表,并判斷是否有
的把握認(rèn)為習(xí)慣使用移動支付與年齡有關(guān),并說明理由.
習(xí)慣使用移動支付 | 不習(xí)慣使用移動支付 | 合計(jì)(人數(shù)) | |
60歲以上 | |||
60歲及以下 | |||
合計(jì)(人數(shù)) | 200 |
(2)在習(xí)慣使用移動支付的60歲以上的人群中,每月移動支付的金額如下表:
每月支付金額 |
|
| 300以上 |
人數(shù) | 15 |
| 5 |
現(xiàn)采用分層抽樣的方法從中抽取6人,再從這6人中隨機(jī)抽取2人,求這2人中有1人月支付金額超過3000元的概率.
附:
,其中
.
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
平面
,點(diǎn)
為
中點(diǎn),底面
為梯形,
,
,
.
![]()
(1)證明:
平面
;
(2)若四棱錐
的體積為4,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的右頂點(diǎn)與拋物線
:
(
)的焦點(diǎn)重合.
的離心率為
,過
的右焦點(diǎn)F且垂直于x軸的直線截
所得的弦長為
.
(1)求橢圓
和拋物線
的方程;
(2)過點(diǎn)
的直線l與橢圓
交于A,B兩點(diǎn),點(diǎn)B關(guān)于x軸的對稱點(diǎn)為點(diǎn)E,證明:直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BD
CD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值
時,三棱錐A﹣BCD的外接球的表面積為_____.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的個數(shù)是( )
①已知函數(shù)
是一次函數(shù),若數(shù)列
通項(xiàng)公式為
,則該數(shù)列是等差數(shù)列;
②若直線
上有兩個不同的點(diǎn)到平面
的距離相等,則
;
③在
中,“
”是“
”的必要不充分條件;
④若
,則
的最大值為2.
A.1B.2C.3D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國正逐漸進(jìn)入老齡化社會,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以80歲為界限分成兩個群體進(jìn)行統(tǒng)計(jì),樣本分布被制作成如下圖表:
![]()
據(jù)統(tǒng)計(jì),該市大約有五分之一的戶籍老人無固定收入,政府計(jì)劃為這部分老人每月發(fā)放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:
①80歲及以上長者每人每月發(fā)放生活補(bǔ)貼300元;
②80歲以下老人每人每月發(fā)放生活補(bǔ)貼200元;
③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100元.
則政府執(zhí)行此計(jì)劃的年度預(yù)算為 ___________萬元.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com