【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對(duì)兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進(jìn)行對(duì)比,其質(zhì)量按測(cè)試指標(biāo)可劃分為:指標(biāo)在區(qū)間
100的為一等品;指標(biāo)在區(qū)間
的為二等品
現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測(cè),測(cè)試指標(biāo)結(jié)果的頻率分布直方圖如圖所示:
![]()
若在甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級(jí),利用分層抽樣的方法抽取10件,再?gòu)倪@10件零件中隨機(jī)抽取3件,求至少有1件一等品的概率;
將頻率分布直方圖中的頻率視作概率,用樣本估計(jì)總體
若從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機(jī)抽取3件,記3件零件中所含一等品的件數(shù)為X,求X的分布列及數(shù)學(xué)期望.
【答案】(1)
;(2)見(jiàn)解析
【解析】
(1)由頻率分布直方圖求出對(duì)應(yīng)的頻率和頻數(shù),再計(jì)算所求的概率值;
(2)由題意知隨機(jī)變量X~B(3,
),計(jì)算對(duì)應(yīng)的概率值,寫出分布列,求出數(shù)學(xué)期望值.
由甲種生產(chǎn)方式生產(chǎn)的100件零件的測(cè)試指標(biāo)的頻率分布直方圖可知,
這100件樣本零件中有一等品:
件
,
二等品:
件
,
所以按等級(jí),利用分層抽樣的方法抽取的10件零件中有一等品4件,二等品6件.
記事件A為“這10件零件中隨機(jī)抽取3件,至少有1件一等品”,
則
;
由乙種生產(chǎn)方式生產(chǎn)的100件零件的測(cè)試指標(biāo)的頻率分布直方圖可知,
這100件樣本零件中,一等品的頻率為
,
二等品的頻率為
;
將頻率分布直方圖中的頻率視作概率,用樣本估計(jì)總體,
則從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機(jī)抽取3件,其中所含一等品的件數(shù)
,
所以
,
,
,
;
的分布列為:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
所以數(shù)學(xué)期望為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下邊的折線圖給出的是甲、乙兩只股票在某年中每月的收盤價(jià)格,已知股票甲的極差是6.88元,標(biāo)準(zhǔn)差為2.04元;股票乙的極差為27.47元,標(biāo)準(zhǔn)差為9.63元,根據(jù)這兩只股票在這一年中的波動(dòng)程度,給出下列結(jié)論:①股票甲在這一年中波動(dòng)相對(duì)較小,表現(xiàn)的更加穩(wěn)定;②購(gòu)買股票乙風(fēng)險(xiǎn)高但可能獲得高回報(bào);③股票甲的走勢(shì)相對(duì)平穩(wěn),股票乙的股價(jià)波動(dòng)較大;④兩只般票在全年都處于上升趨勢(shì).其中正確結(jié)論的個(gè)數(shù)是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某臍橙種植基地記錄了10棵臍橙樹(shù)在未使用新技術(shù)的年產(chǎn)量(單位:
)和使用了新技術(shù)后的年產(chǎn)量的數(shù)據(jù)變化,得到表格如下:
未使用新技術(shù)的10棵臍橙樹(shù)的年產(chǎn)量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產(chǎn)量 | 30 | 32 | 30 | 40 | 40 | 35 | 36 | 45 | 42 | 30 |
使用了新技術(shù)后的10棵臍橙樹(shù)的年產(chǎn)量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年產(chǎn)量 | 40 | 40 | 35 | 50 | 55 | 45 | 42 | 50 | 51 | 42 |
已知該基地共有20畝地,每畝地有50棵臍橙樹(shù).
(1)估計(jì)該基地使用了新技術(shù)后,平均1棵臍橙樹(shù)的產(chǎn)量;
(2)估計(jì)該基地使用了新技術(shù)后,臍橙年總產(chǎn)量比未使用新技術(shù)將增產(chǎn)多少?
(3)由于受市場(chǎng)影響,導(dǎo)致使用新技術(shù)后臍橙的售價(jià)由原來(lái)(未使用新技術(shù)時(shí))的每千克10元降為每千克9元,試估計(jì)該基地使用新技術(shù)后臍橙年總收入比原來(lái)增加的百分?jǐn)?shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①正切函數(shù)圖象的對(duì)稱中心是唯一的;
②若函數(shù)
的圖像關(guān)于直線
對(duì)稱,則這樣的函數(shù)
是不唯一的;
③若
,
是第一象限角,且
,則
;
④若
是定義在
上的奇函數(shù),它的最小正周期是
,則
.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在橢圓
外一直線
上取
個(gè)不同的點(diǎn)
,過(guò)
向橢圓
作切線
、
,切點(diǎn)分別為
、
.記直線
為
.
(1)若存在正整數(shù)
、
(
、
,
),使得點(diǎn)
在直線
上,證明:點(diǎn)
在直線
上;
(2)試求直線
將橢圓
分成的區(qū)域的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐
中,
菱形
所在的平面,
是
中點(diǎn),
是
上的點(diǎn).
(1)求證:平面
平面
;
(2)若
是
的中點(diǎn),當(dāng)
時(shí),是否存在點(diǎn)
,使直線
與平面
的所成角的正弦值為
?若存在,請(qǐng)求出
的值,若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我省5名醫(yī)學(xué)專家馳援湖北武漢抗擊新冠肺炎疫情現(xiàn)把專家全部分配到A,B,C三個(gè)集中醫(yī)療點(diǎn),每個(gè)醫(yī)療點(diǎn)至少要分配1人,其中甲專家不去A醫(yī)療點(diǎn),則不同分配種數(shù)為( )
A.116B.100C.124D.90
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)證明:當(dāng)
時(shí),函數(shù)
在
上是單調(diào)函數(shù);
(2)當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
,
,
為自然對(duì)數(shù)的底數(shù)),若
對(duì)于
恒成立.
(1)求實(shí)數(shù)
的值;
(2)證明:
存在唯一極大值點(diǎn)
,且
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com