【題目】如果四面體的四條高交于一點,則該點稱為四面體的垂心,該四面體稱為垂心四面體.
![]()
(1)證明:如果四面體的對棱互相垂直,則該四面體是垂心四面體;反之亦然.
(2)給出下列四面體
①正三棱錐;
②三條側(cè)棱兩兩垂直;
③高在各面的射影過所在面的垂心;
④對棱的平方和相等.
其中是垂心四面體的序號為 .
【答案】(1)證明見解析(2)①②③④
【解析】
(1)首先證明四面體的兩條高線交于一點,再證過另一頂點和這一點的直線為另一條高線,即可證明結(jié)論成立.(2)①②③可通過證明對棱垂直證明是垂心四面體,④假設(shè)四面體為垂心四面體,則可證明有對棱的平方和相等,逆推依然成立,所以④也成立.
(1)先證對棱互相垂直的四面體是垂心四面體.
作
,則
,
![]()
![]()
![]()
![]()
![]()
此時兩條高線![]()
連接
,下證![]()
![]()
![]()
.連接![]()
綜上可知,四條高線交于點
,故該四面體為垂心四面體;
反之,若該四面體為垂心四面體,即四條高線交于點
.![]()
,![]()
,
,故
,
同理可證![]()
(2)①正三棱錐底面為正三角形,側(cè)面為全等的等腰三角形,可證明三組對棱兩兩垂直,所以①符合要求.②三條側(cè)棱兩兩垂直,任一條側(cè)棱垂直另外兩條側(cè)棱所在的平面,也可證明對棱垂直,所以②符合要求.③高垂直于底面棱,在側(cè)面的射影垂直于此面的底面棱,所以底面棱垂直于高和射影所在的平面,即垂直于對棱,所以③符合要求.④假設(shè)四面體
為垂心四面體,設(shè)BF交CD于E,則AC2﹣AD2=CF2﹣DF2=CE2﹣DE2=BC2﹣BD2,即AC2+BD2=AD2+BC2,反之,若故AC2+BD2=AD2+BC2,則有C2﹣AD2=CF2﹣DF2=CE2﹣DE2=BC2﹣BD2成立,即
同理可證其他,故④符合要求.
①②③④均符合要求.
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
的離心率是
,一個頂點是
.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)
,
是橢圓
上異于點
的任意兩點,且
.試問:直線
是否恒過一定點?若是,求出該定點的坐標;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=2py經(jīng)過點(2,1).
(Ⅰ)求拋物線C的方程及其準線方程;
(Ⅱ)設(shè)O為原點,過拋物線C的焦點作斜率不為0的直線l交拋物線C于兩點M,N,直線y=1分別交直線OM,ON于點A和點B.求證:以AB為直徑的圓經(jīng)過y軸上的兩個定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班從4位男生和3位女生志愿者選出4人參加校運會的點名簽到工作,則選出的志愿者中既有男生又有女生的概率的是__________.(結(jié)果用最簡分數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們稱滿足以下兩個條件的有窮數(shù)列
為
階“期待數(shù)列”;①
;②
.
(1)若數(shù)列
的通項公式是
,試判斷數(shù)列
是否為2014階“期待數(shù)列”,并說明理由;
(2)若等比數(shù)列
為
階“期待數(shù)列”,求公比
及數(shù)列
的通項公式;
(3)若一個等差數(shù)列
既是(
)階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次不等式ax2+x+b>0的解集為(-∞,-2)∪(1,+∞).
(Ⅰ)求a和b的值;
(Ⅱ)求不等式ax2-(c+b)x+bc<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點.
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點,求三棱錐AEBC的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線
的焦點為F,圓
,點
為拋物線上一動點.已知當
的面積為
.
![]()
(I)求拋物線方程;
(II)若
,過P做圓C的兩條切線分別交y軸于M,N兩點,求
面積的最小值,并求出此時P點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一年級某個班分成8個小組,利用假期參加社會公益服務(wù)活動
每個小組必須全員參加
,參加活動的次數(shù)記錄如下:
組別 |
|
|
|
|
|
|
|
|
參加活動次數(shù) | 3 | 2 | 4 | 3 | 2 | 4 | 1 | 3 |
Ⅰ
從這8個小組中隨機選出2個小組在全校進行活動匯報
求“選出的2個小組參加社會公益服務(wù)活動次數(shù)相等”的概率;
Ⅱ
記每個小組參加社會公益服務(wù)活動的次數(shù)為X.
求X的分布列和數(shù)學(xué)期望EX;
至
幾小組每組有4名同學(xué),
小組有5名同學(xué)記“該班學(xué)生參加社會公益服務(wù)活動的平均次數(shù)”為
,寫出
與EX的大小關(guān)系
結(jié)論不要求證明
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com