【題目】在四棱錐P-ABCD中,底面ABCD為直角梯形,
,
,
,
,且平面
平面ABCD.
![]()
(1)求證:
;
(2)在線段PA上是否存在一點(diǎn)M,使二面角M-BC-D的大小為
?若存在,求出
的值;若不存在,請(qǐng)說明理由.
【答案】(1)證明見解析;(2)存在,
.
【解析】
(1) 過點(diǎn)P在面PAD內(nèi)作
,垂足為O,連接BO、OC,可得
,再結(jié)已知條件可得
是等邊三角形,進(jìn)而判斷出四邊形OBCD是正方形,從而得
面POC,
得
;
(2)由于
面ABCD,
,所以以O坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè)
,則點(diǎn)M的坐標(biāo)為
,求出平面MBC和平面ABCD的法向量
,用
,求出
的值,從而得到
的值
(1)證明:過點(diǎn)P在面PAD內(nèi)作
,垂足為O,連接BO、OC
∵面
面ABCD,
∴
面ABCD,∴![]()
∵
,
,
∴
是等邊三角形,∴![]()
又∵
,![]()
∴四邊形OBCD是正方形,∴
,
又
,∴
面POC,
又
面POC,∴
.
![]()
(2)∵
面ABCD,
,如圖,建立空間直角坐標(biāo)系
﹐
![]()
則
,
,
,
,![]()
假設(shè)在線段PA上存在一點(diǎn)M,使二面角
大小為![]()
設(shè)
,
,則
,
所以
,
∴
,
,
設(shè)面MBC的法向量為
,
則
,即
,令
,得
,
所以
,面ABCD的一個(gè)法向量為![]()
∵二面角M-BC-D大小為
,
∴![]()
∴
或
(舍),
所以在線段PA上存在點(diǎn)M滿足題設(shè)條件且
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知焦點(diǎn)在
軸上的拋物線
過點(diǎn)
,橢圓
的兩個(gè)焦點(diǎn)分別為
,其中
與
的焦點(diǎn)重合,過
與長(zhǎng)軸垂直的直線交橢圓
于
兩點(diǎn)且
,曲線
是以原點(diǎn)為圓心以
為半徑的圓.
(1)求
與
及
的方程;
(2)若動(dòng)直線
與圓
相切,且與
交與
兩點(diǎn),三角形
的面積為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<
)的部分圖象如圖所示
(1)求A,ω,φ的值;
(2)求圖中a,b的值及函數(shù)f(x)的遞增區(qū)間;
(3)若α∈[0,π],且f(α)=
,求α的值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)f(x)
(x∈R),有下述四個(gè)結(jié)論:
①任意x∈R,等式f(﹣x)+f(x)=0恒成立;
②任意x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2);
③存在m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根;
④存在k∈(1,+∞),使得函數(shù)g(x)=f(x)﹣kx在R上有三個(gè)零點(diǎn).
其中包含了所有正確結(jié)論編號(hào)的選項(xiàng)為( )
A.①②③④B.①②③C.①②④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)
,當(dāng)
時(shí),函數(shù)
有極值
.
(1)求函數(shù)
的解析式;
(2)求函數(shù)
的極值;
(3)若關(guān)于
的方程
有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
的部分圖象如圖所示,則下列敘述正確的是( )
![]()
A.函數(shù)
的圖象可由
的圖象向左平移
個(gè)單位得到
B.函數(shù)
的圖象關(guān)于直線
對(duì)稱
C.函數(shù)
在區(qū)間
上是單調(diào)遞增的
D.函數(shù)
圖象的對(duì)稱中心為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙二人獨(dú)立破譯同一密碼,甲破譯密碼的概率為
,乙破譯密碼的概率為
.記事件A:甲破譯密碼,事件B:乙破譯密碼.
(1)求甲、乙二人都破譯密碼的概率;
(2)求恰有一人破譯密碼的概率;
(3)小明同學(xué)解答“求密碼被破譯的概率”的過程如下:
解:“密碼被破譯”也就是“甲、乙二人中至少有一人破譯密碼”所以隨機(jī)事件“密碼被破譯”可以表示為
所以![]()
請(qǐng)指出小明同學(xué)錯(cuò)誤的原因?并給出正確解答過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
年,“非典”爆發(fā),以鐘南山為代表的醫(yī)護(hù)工作者經(jīng)長(zhǎng)期努力,抗擊了非典.
年
歲高齡的鐘院士再次披掛上陣,逆行武漢抗擊新冠疫情。為調(diào)查中學(xué)生對(duì)這一偉大“逆行者”的了解程度,某調(diào)查小組隨機(jī)抽取了某市物化生、政史地的
名高中生,請(qǐng)他們列舉鐘南山院士在醫(yī)學(xué)上的成就,把能列舉鐘南山成就不少于
項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”他們的調(diào)查結(jié)果如下:
組合 | 0項(xiàng) | 1項(xiàng) | 2項(xiàng) | 3項(xiàng) | 4項(xiàng) | 5項(xiàng) | 5項(xiàng)以上 |
物化生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
政史地(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整;
組合 | 比較了解 | 不太了解 | 合計(jì) |
物化生 | |||
政史地 | |||
合計(jì) |
(2)判斷是否有99%的把握認(rèn)為,了解鐘南山與選擇物化生、政史地組合有關(guān)?
參考:![]()
.
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
是自然對(duì)數(shù)的底數(shù))
(1)求證: ![]()
(2)若不等式
在
上恒成立,求正數(shù)
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com