【題目】已知圓
,過點(diǎn)
向圓
引兩條切線
,
,切點(diǎn)為
,
,若點(diǎn)
的坐標(biāo)為
,則直線
的方程為____________;若
為直線
上一動(dòng)點(diǎn),則直線
經(jīng)過定點(diǎn)__________.
【答案】
.
.
【解析】
由題意,求得以
為直徑的圓的方程
,兩圓的方程相減,即可得到直線
的方程,設(shè)
,求得以
為直徑的圓的方程,兩圓的方程相減,則
的方程為
,即可判定,得到答案.
由題意,圓
的圓心坐標(biāo)為
,
則以
和
為直徑的圓的圓心為
,半徑為
.
可得以
為直徑的圓的方程為
,即
,
兩圓的方程相減可得
,即直線
的方程為
.
因?yàn)辄c(diǎn)
為直線
上一動(dòng)點(diǎn),設(shè)
,
因?yàn)?/span>
是圓
的切線,所以
,
所以
是圓
與以
為直徑的兩圓的公共弦,
可得以
為直徑的圓的方程為
,
又由圓
的方程為
,
兩圓的方程相減,則
的方程為
,
可得
滿足上式,即
過定點(diǎn)
.
故答案為:
,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是拋物線
上一點(diǎn),經(jīng)過點(diǎn)
的直線
與拋物線
交于
、
兩點(diǎn)(不同于點(diǎn)
),直線
、
分別交直線
于點(diǎn)
、
.
(1)求拋物線方程及其焦點(diǎn)坐標(biāo);
(2)求證:以
為直徑的圓恰好經(jīng)過原點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
:
與圓
:
相切,并且橢圓
上動(dòng)點(diǎn)與圓
上動(dòng)點(diǎn)間距離最大值為
.
![]()
(1)求橢圓
的方程;
(2)過點(diǎn)
作兩條互相垂直的直線
,
,
與
交于
兩點(diǎn),
與圓
的另一交點(diǎn)為
,求
面積的最大值,并求取得最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若集合
具有以下性質(zhì):(1)
且
;(2)若
,
,則
,且當(dāng)
時(shí),
,則稱集合
為“閉集”.
(1)試判斷集合
是否為“閉集”,請說明理由;
(2)設(shè)集合
是“閉集”,求證:若
,
,則
;
(3)若集合
是一個(gè)“閉集”,試判斷命題“若
,
,則
”的真假,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為坐標(biāo)原點(diǎn),橢圓
:
的左、右焦點(diǎn)分別為
,
.過焦點(diǎn)且垂直于
軸的直線與橢圓
相交所得的弦長為3,直線
與橢圓
相切.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)是否存在直線
:
與橢圓
相交于
兩點(diǎn),使得
?若存在,求
的取值范圍;若不存在,請說明理由!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若
是
的極大值點(diǎn),求
的取值范圍;
(2)當(dāng)
,
時(shí),方程
(其中
)有唯一實(shí)數(shù)解,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,點(diǎn)M為線段PA上任意一點(diǎn)(不含端點(diǎn)),點(diǎn)N在線段BD上,且PM=DN.
(1)求證:直線MN∥平面PCD.
(2)若點(diǎn)M為線段PA的中點(diǎn),求直線PB與平面AMN所成角的余弦值.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com