(本小題滿分13分).某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長(zhǎng)度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的體積為
立方米,且
.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為
千元,設(shè)該容器的建造費(fèi)用為
千元.![]()
(Ⅰ)寫出
關(guān)于
的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費(fèi)用最小時(shí)的
.
(I)
;
(II)
是函數(shù)y的極小值點(diǎn),也是最小值點(diǎn)。
(2)當(dāng)
時(shí),建造費(fèi)用最小時(shí)
當(dāng)
時(shí),建造費(fèi)用最小時(shí)
。
解析試題分析:(I)設(shè)容器的容積為V,
由題意知![]()
故![]()
由于![]()
因此
…………………………………………………………………….3分
所以建造費(fèi)用![]()
因此
………………………………………..5分
(II)由(I)得![]()
由于![]()
當(dāng)![]()
令![]()
![]()
所以
………………………………….7分
(1)當(dāng)
時(shí),![]()
所以
是函數(shù)y的極小值點(diǎn),也是最小值點(diǎn)。………………….10分
(2)當(dāng)
即
時(shí),
當(dāng)
函數(shù)單調(diào)遞減,
所以r=2是函數(shù)y的最小值點(diǎn),
綜上所述,當(dāng)
時(shí),建造費(fèi)用最小時(shí)![]()
當(dāng)
時(shí),建造費(fèi)用最小時(shí)
………………13分
考點(diǎn):本題主要考查導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用,利用導(dǎo)數(shù)求函數(shù)的最值,幾何體特征及體積計(jì)算。
點(diǎn)評(píng):高考題,構(gòu)建函數(shù)關(guān)系、準(zhǔn)確求導(dǎo)數(shù)是解題的關(guān)鍵。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
的圖象過點(diǎn)(1,13),圖像關(guān)于直線
對(duì)稱。
(1)求
的解析式。
(2)已知
,
,
① 若函數(shù)
的零點(diǎn)有三個(gè),求實(shí)數(shù)
的取值范圍;
②求函數(shù)
在[
,2]上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分
分)
若函數(shù)
在定義域
內(nèi)某區(qū)間
上是增函數(shù),而
在
上是減函數(shù),
則稱
在
上是“弱增函數(shù)”
(1)請(qǐng)分別判斷
=
,
在
是否是“弱增函數(shù)”,
并簡(jiǎn)要說明理由;
(2)證明函數(shù)
(
是常數(shù)且
)在
上是“弱增函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
(
),
(Ⅰ)求函數(shù)
的最小值;
(Ⅱ)已知
,
:關(guān)于
的不等式
對(duì)任意
恒成立;
:函數(shù)
是增函數(shù).若“
或
”為真,“
且
”為假,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知
是定義在
上的奇函數(shù),當(dāng)
時(shí),
。![]()
(1)求
及
的值;
(2)求
的解析式并畫出簡(jiǎn)圖;
(3)寫出
的單調(diào)區(qū)間(不用證明)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)
如圖,在半徑為
的
圓形(
為圓心)鋁皮上截取一塊矩形材料
,其中點(diǎn)
在圓上,點(diǎn)
、
在兩半徑上,現(xiàn)將此矩形鋁皮
卷成一個(gè)以
為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng)
,圓柱的體積為![]()
.![]()
(1)寫出體積
關(guān)于
的函數(shù)關(guān)系式,并指出定義域;
(2)當(dāng)
為何值時(shí),才能使做出的圓柱形罐子體積
最大?最大體積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在
上的函數(shù)
,如果滿足:對(duì)任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.
(1)判斷函數(shù)
是否是有界函數(shù),請(qǐng)寫出詳細(xì)判斷過程;
(2)試證明:設(shè)
,若
在
上分別以
為上界,
求證:函數(shù)
在
上以
為上界;
(3)若函數(shù)
在
上是以3為上界的有界函數(shù),
求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某工廠修建一個(gè)長(zhǎng)方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的 造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長(zhǎng)方形長(zhǎng)為
米.
(1)求底面積,并用含
的表達(dá)式表示池壁面積;
(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com