【題目】已知橢圓
+
=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2
,離心率為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,
)滿足|MA|=|MB|,求直線l的斜率k的值.
【答案】(1)
;(2)
.
【解析】
試題分析:(1)根據(jù)
與離心率可求得a,b,c的值,從而就得到橢圓的方程;(2)設(shè)出直線的方程
,并與橢圓方程聯(lián)立消去y可得到關(guān)于x的一元二次方程,然后利用中點坐標(biāo)公式與分類討論的思想進行解決.
試題解析:(1)
,∴
,
,∴
,∴
,
橢圓的標(biāo)準(zhǔn)方程為
.
(2)已知
,設(shè)直線的方程為
,
-,
聯(lián)立直線與橢圓的方程
,化簡得:
,
∴
,
,
∴
的中點坐標(biāo)為
.
①當(dāng)
時,
的中垂線方程為
,
∵
,∴點
在
的中垂線上,將點
的坐標(biāo)代入直線方程得:
,即
,
解得
或
.
②當(dāng)
時,
的中垂線方程為
,滿足題意,
∴斜率
的取值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某經(jīng)濟開發(fā)區(qū)規(guī)劃要修建一地下停車場,停車場橫截面是如圖所示半橢圓形AMB,其中AP為2百米,BP為4百米,
,M為半橢圓上異于A,B的一動點,且
面積最大值為
平方百米,如圖建系.
![]()
求出半橢圓弧的方程;
若要將修建地下停車場挖出的土運到指定位置P處,N為運土點,以A,B為出口,要使運土最省工,工程部需要指定一條分界線,請求出分界線所在的曲線方程;
若在半橢圓形停車場的上方修建矩形商場,矩形的一邊CD與AB平行,設(shè)
百米,試確定t的值,使商場地面的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了了解職工的工作狀況,隨機抽取了一個車間對職工工作時間的情況進行暗訪,工作時間在
小時及以上的為合格.把所得數(shù)據(jù)進行整理后,分成
組畫出頻率分布直方圖(如圖所示),但由于工作疏忽,沒有畫出最后一組,只知道最后一組的頻數(shù)是
.
![]()
(Ⅰ)求這次暗訪中工作時間不合格的人數(shù);
(Ⅱ)已知在工作時間超過
小時的人中有兩名女職工,現(xiàn)要從工作時間在
小時以上的人中選出兩名代表在職工代表大會上發(fā)言,求至少選出一位女職工作代表的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=(e-x-ex)
,則不等式f(x)<f(1+x)的解集為( )
A. (0,+∞) B. (-∞,-
)
C. (-
,+∞) D. (-
,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
是定義在
上的偶函數(shù),當(dāng)
時,
).
(1)當(dāng)
時,求
的解析式;
(2)若
,試判斷
的上單調(diào)性,并證明你的結(jié)論;
(3)是否存在
,使得當(dāng)
時,
有最大值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
.
(1)當(dāng)
時,判斷
在
的單調(diào)性,并用定義證明.
(2)若對任意
,不等式
恒成立,求
的取值范圍;
(3)討論
零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
有兩個極值點
,
(
).
(1)求實數(shù)
的取值范圍;
(2)設(shè)
,若函數(shù)
的兩個極值點恰為函數(shù)
的兩個零點,當(dāng)
時,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個)考慮,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xoy中,已知直線
的參數(shù)方程為
為參數(shù),
以原點O為極點,以
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為![]()
(1)寫出直線
的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(2)若直線
與曲線C相交于A,B 兩點,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com