【題目】平頂山市公安局交警支隊依據(jù)《中華人民共和國道路交通安全法》第
條規(guī)定:所有主干道路凡機動車途經(jīng)十字口或斑馬線,無論轉彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以
元罰款,記
分的行政處罰.如表是本市一主干路段監(jiān)控設備所抓拍的
個月內(nèi),機動車駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 |
|
|
|
|
|
違章駕駛員人數(shù) |
|
|
|
|
|
(Ⅰ)請利用所給數(shù)據(jù)求違章人數(shù)
與月份
之間的回歸直線方程
;
(Ⅱ)預測該路段
月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式:
,
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一輛汽車從A市出發(fā)沿海岸一條筆直公路以
的速度向東勻速行駛,汽車開動時,在A市南偏東方向距A市500km且與海岸距離為300km的海上B處有一艘快艇與汽車同時出發(fā),要把一份文件交給這輛汽車的司機.
(1)快艇至少以多大的速度行駛才能把文件送到司機手中?
(2)求快艇以最小速度行駛時的行駛方向與
所成角的大小.
(3)若快艇每小時最快行駛
,快艇應如何行駛才能盡快把文件交到司機手中?最快需多長時間?
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點
滿足:
.
(1)求動點
的軌跡
的方程;
(2)設過點
的直線
與曲線
交于
兩點,點
關于
軸的對稱點為
(點
與點
不重合),證明:直線
恒過定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
是定義在
上的函數(shù),并且滿足下面三個條件:(1)對正數(shù)
,都有
;(2)當
時,
;(3)
;
(1)求
和
的值;
(2)如果不等式
成立,求
的取值范圍;
(3)如果存在正數(shù)
,使不等式
有解,求正數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線C1的參數(shù)方程為
(t為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2(1+sin2θ)=2,點M的極坐標為(
,
).
(1)求點M的直角坐標和C2的直角坐標方程;
(2)已知直線C1與曲線C2相交于A,B兩點,設線段AB的中點為N,求|MN|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解人們對“
年
月在北京召開的第十三屆全國人民代表大會第二次會議和政協(xié)第十三屆全國委員會第二次會議”的關注度,某部門從年齡在
歲到
歲的人群中隨機調(diào)查了
人,并得到如圖所示的年齡頻率分布直方圖,在這
人中關注度非常髙的人數(shù)與年齡的統(tǒng)計結果如表所示:
年齡 | 關注度非常高的人數(shù) |
|
|
|
|
|
|
|
|
|
|
![]()
(1)由頻率分布直方圖,估計這
人年齡的中位數(shù)和平均數(shù);
(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的
列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過
的前提下,認為以
歲為分界點的不同人群對“兩會”的關注度存在差異?
(3)按照分層抽樣的方法從年齡在
歲以下的人中任選六人,再從六人中隨機選兩人,求兩人中恰有一人年齡在
歲以下的概率是多少.
|
| 總計 | |
非常高 | |||
一般 | |||
總計 |
參考數(shù)據(jù):
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們把焦點相同且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關曲線”.已知
是一對相關曲線的焦點,
分別是橢圓和雙曲線的離心率,若
為它們在第一象限的交點,
,則雙曲線的離心率
( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系
中,直線
經(jīng)過點
,其傾斜角為
,以原點
為極點,以
軸為非負半軸為極軸,與坐標系
取相同的長度單位,建立極坐標系.設曲線
的極坐標方程為
.
(1)若直線
與曲線
有公共點,求傾斜角
的取值范圍;
(2)設
為曲線
上任意一點,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com