【題目】已知函數(shù)f(x)=ax+
+c是奇函數(shù),且滿足f(1)=
,f(2)=
.
(1)求a,b,c的值;
(2)試判斷函數(shù)f(x)在區(qū)間(0,
)上的單調(diào)性并證明.
【答案】
(1)解:∵f(﹣x)=﹣f(x)∴c=0,
∵
,∴
,
∴
;
(2)解:∵由(1)問可得f(x)=2x+
,
∴f(x)在區(qū)間(0,0.5)上是單調(diào)遞減的;
證明:設(shè)任意的兩個(gè)實(shí)數(shù)0<x1<x2<
,
∵f(x1)﹣f(x2)=2(x1﹣x2)+
﹣
=2(x1﹣x2)+
=
,
又∵0<x1<x2<
,
∴x1﹣x2<0,0<x1x2<
,1﹣4x1x2>0,
f(x1)﹣f(x2)>0,
∴f(x)在區(qū)間(0,0.5)上是單調(diào)遞減的
【解析】(1)由函數(shù)是奇函數(shù)得到c=0,再利用題中的2個(gè)等式求出a、b的值.(2)區(qū)間(0,
)上任取2個(gè)自變量x1、x2 , 將對(duì)應(yīng)的函數(shù)值作差、變形到因式積的形式,判斷符號(hào),依據(jù)單調(diào)性的定義做出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí),掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較,以及對(duì)函數(shù)奇偶性的性質(zhì)的理解,了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,則導(dǎo)函數(shù)f′(x)是( )
A.僅有最小值的奇函數(shù)
B.既有最大值,又有最小值的偶函數(shù)
C.僅有最大值的偶函數(shù)
D.既有最大值,又有最小值的奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,函數(shù)
的導(dǎo)函數(shù)為
.
⑴ 若直線
與曲線
恒相切于同一定點(diǎn),求
的方程;
⑵ 若
,求證:當(dāng)
時(shí),
恒成立;
⑶ 若當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1],若n﹣m的最小值為
,則實(shí)數(shù)a的值為( )
A.![]()
B.
或 ![]()
C.![]()
D.
或 ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
中,
,前
項(xiàng)和
滿足
(
).
⑴ 求數(shù)列
的通項(xiàng)公式;
⑵ 記
,求數(shù)列
的前
項(xiàng)和
;
⑶ 是否存在整數(shù)對(duì)
(其中
,
)滿足
?若存在,求出所有的滿足題意的整數(shù)對(duì)
;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,下列條件:
①∠B+∠DAC=90°,
②∠B=∠DAC,
③
,
④AB2=BD·BC.
其中一定能夠判定△ABC是直角三角形的共有( )
![]()
A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時(shí),f(x)=lnx﹣ax(a>
),當(dāng)x∈(﹣2,0)時(shí),f(x)的最小值為1,則a的值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求
在
處的切線方程;
(2)若
在區(qū)間
上恰有兩個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com