【題目】如圖,在直三棱柱
中,
,點
分別為棱
的中點.
(Ⅰ)求證:
∥平面![]()
(Ⅱ)求證:平面
平面
;
(Ⅲ)在線段
上是否存在一點
,使得直線
與平面
所成的角為300?如果存在,求出線段
的長;如果不存在,說明理由.
![]()
【答案】(1)證明見解析;(2)證明見解析;(3)1.
【解析】
(1) 方法一:取
中點為
,連結(jié)
,,要證
平面
,即證:
,;方法二:以
為原點,分別以
為
軸,
軸,
軸,建立空間直角坐標系
,求出平面
的法向量為
,又因為
,
即可得證.(2)方法一:要證平面
平面
,轉(zhuǎn)證
平面
即證
;方法二:分別求出兩個平面的法向量即可得證.(3)建立空間直角坐標系,利用坐標法即可得到結(jié)果.
方法一:(1)取
中點為
,連結(jié)
,
由
且
,
又點
為
中點,所以
,
又因為
分別為
,
中點,所以
,
所以
,
所以
共面于平面
,
因為
,
分別為
中點, 所以
,
平面
,
平面
,
所以
平面
.
方法二:在直三棱柱
中,
平面![]()
又因為
,
以
為原點,分別以
為
軸,
軸,
軸,建立空間直角坐標系
,
![]()
由題意得
,
.
所以
,
,
設平面
的法向量為
,則
,即
,
令
,得
,
于是
,
又因為
,
所以
,
又因為
平面
,
所以
平面
.
(2)方法一:在直棱柱
中,
平面
,
因為
,所以
,
又因為
,
且
,
所以
平面
,
平面
,所以
,
又
,四邊形
為正方形,
所以
,
又
,所以
,
又
,
且
,
所以
平面
,
又
平面
,
所以平面
平面
.
方法二:設平面
的法向量為
,
,
,即
,
令
,得
,
于是
,
,
即
,所以平面
平面
.
(3)設直線
與平面
所成角為
,則
,
設
,則
,
,
所以
,
解得
或
(舍),
所以點
存在,即
的中點,
.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的離心率為
分別為其左、右焦點,
為橢圓
上一點,且
的周長為
.
(1)求橢圓
的方程;
(2)過點
作關(guān)于軸
對稱的兩條不同的直線
,若直線
交橢圓
于一點
,直線
交橢圓
于一點
,證明:直線
過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已兩動圓
和![]()
,把它們的公共點的軌跡記為曲線
,若曲線
與
軸的正半軸交點為
,且曲線
上異于點
的相異兩點
、
滿足
.
(1)求曲線
的方程;
(2)證明直線
恒經(jīng)過一定點,并求出此定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,其中
為自然對數(shù)的底數(shù).
(1)若
,求
的單調(diào)區(qū)間;
(2)當
時,記
的最小值為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表是某地一家超市在2018年一月份某一周內(nèi)周2到周6的時間
與每天獲得的利潤
(單位:萬元)的有關(guān)數(shù)據(jù).
星期 | 星期2 | 星期3 | 星期4 | 星期5 | 星期6 |
利潤 | 2 | 3 | 5 | 6 | 9 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程
;
(2)估計星期日獲得的利潤為多少萬元.
參考公式: ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無價之寶.改革開放以來,有的地方領(lǐng)導片面追求政績,對森林資源野蠻開發(fā)受到嚴肅查處事件時有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進甲、乙兩種樹苗,并對甲、乙兩種樹苗各抽測了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:
![]()
(1)據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;
(2)據(jù)莖葉圖,運用統(tǒng)計學知識分析比較甲、乙兩種樹苗高度整齊情況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場為提高服務質(zhì)量,隨機調(diào)查了50名男顧客和50名女顧客,每位顧客對該商場的服務給出滿意或不滿意的評價,得到下面列聯(lián)表:
滿意 | 不滿意 | |
男顧客 | 40 | 10 |
女顧客 | 30 | 20 |
(1)分別估計男、女顧客對該商場服務滿意的概率;
(2)能否有95%的把握認為男、女顧客對該商場服務的評價有差異?
附:
.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年1月3日嫦娥四號探測器成功實現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實現(xiàn)月球背面軟著陸需要解決的一個關(guān)鍵技術(shù)問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日
點的軌道運行.
點是平衡點,位于地月連線的延長線上.設地球質(zhì)量為M1,月球質(zhì)量為M2,地月距離為R,
點到月球的距離為r,根據(jù)牛頓運動定律和萬有引力定律,r滿足方程:
.
設
,由于
的值很小,因此在近似計算中
,則r的近似值為
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在
,
,
,
,
,
(單位:克)中,經(jīng)統(tǒng)計的頻率分布直方圖如圖所示.
![]()
(1)估計這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表);
(2)現(xiàn)按分層抽樣從質(zhì)量為[200,250),[250,300)的芒果中隨機抽取5個,再從這5個中隨機抽取2個,求這2個芒果都來自同一個質(zhì)量區(qū)間的概率;
(3)某經(jīng)銷商來收購芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出以下兩種收購方案:
方案①:所有芒果以9元/千克收購;
方案②:對質(zhì)量低于250克的芒果以2元/個收購,對質(zhì)量高于或等于250克的芒果以3元/個收購.
通過計算確定種植園選擇哪種方案獲利更多.
參考數(shù)據(jù):
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com