【題目】如圖,在四棱錐
中,底面
是矩形,
平面
,
,
,
是
的中點,連接
.
![]()
(1)求證:
;
(2)求直線
與平面
所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,點![]()
在橢圓![]()
上,且橢圓的離心率為
.
![]()
(1)求橢圓
的標準方程;
(2)記橢圓的左、右頂點分別為
,過點
或
作一條直線交橢圓
于
、
(不與
重合)兩點,直線
交于點
,記直線
的斜率分別為
.
①對于給定的
,求
的值;
②是否存在一個定值
使得
恒成立,若存在,求出
值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在邊長為
的正方形中
,
、
分別為
、
的中點,沿
將矩形
折起使得
,如圖2所示,點
在
上,
,
、
分別為
、
中點.
![]()
(1)求證:
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
,過點
作
軸的垂線
交函數(shù)
圖象于點
,以
為切點作函數(shù)
圖象的切線交
軸于點
,再過
作
軸的垂線
交函數(shù)
圖象于點
,
,以此類推得點
,記
的橫坐標為
,
.
(1)證明數(shù)列
為等比數(shù)列并求出通項公式;
(2)設直線
與函數(shù)
的圖象相交于點
,記
(其中
為坐標原點),求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數(shù)方程為
(
為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標系.
(1)求曲線C的極坐標方程;
(2)直線
(t為參數(shù))與曲線C交于A,B兩點,求
最大時,直線l的直角坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中曲線
的參數(shù)方程為
(
為參數(shù)),以
為極點,
軸的正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)求曲線
的普通方程以及直線
的直角坐標方程;
(2)將曲線
向左平移2個單位,再將曲線
上的所有點的橫坐標縮短為原來的
,得到曲線
,求曲線
上的點到直線
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
:
(
)過點
與
.
(1)求橢圓
的方程;
(2)設過橢圓
的右焦點
,且傾斜角為
的直線
和橢圓
交于
、
兩點,對于橢圓
上任一點
,若
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調查部門在該校進行了一次問卷調查(共12道題),從該校學生中隨機抽取40人,統(tǒng)計了每人答對的題數(shù),將統(tǒng)計結果分成
,
,
,
,
,
六組,得到如下頻率分布直方圖.
![]()
(1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若從答對題數(shù)在
內的學生中隨機抽取2人,求恰有1人答對題數(shù)在
內的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,橢圓
:
的離心率為
,左、右頂點分別為
、
,線段
的長為4.點
在橢圓
上且位于第一象限,過點
,
分別作
,
,直線
,
交于點
.
![]()
(1)若點
的橫坐標為-1,求點
的坐標;
(2)直線
與橢圓
的另一交點為
,且
,求
的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com