【題目】一個正方形被剖分為4個正方形,剖分圖的邊數(shù)為12.若一個正方形被剖分為2005個凸多邊形,試求剖分圖中邊數(shù)的最大值.
【答案】正方形剖分為2005個凸多邊形時,邊的最大值為6016.
【解析】
由歐拉定理可知,簡單多面體的頂點數(shù)
、面數(shù)
、棱數(shù)
有如下關(guān)系:
.
由歐拉定理容易看出,若一個凸多邊形被剖分為
個凸多邊形,則剖分圖中的頂點數(shù)
、多邊形數(shù)
、邊數(shù)
滿足
. ①
下面在一般的情況下,即正方形被剖分為
個凸多邊形時,求剖分圖中邊數(shù)的最大值.設(shè)剖分圖中的頂點數(shù)為
、多邊形數(shù)為
、邊數(shù)為
.
(1)先求邊數(shù)的上界.
設(shè)原正方形的4個頂點是
、
、
、
.若凸多邊形的頂點
,則易知
(這里用
表示過頂點
的邊數(shù)).
故
.
注意到這樣的頂點
有
個,于是,有
個上面的不等式.將它們相加求和,并注意到除去正方形四邊的每條邊恰是兩個凸多邊形的邊,有
![]()
.
即
.
因為
,
,
,
.
則
. ②
由式①有
.
將式②代入式③,并整理得
,即
.
(2)構(gòu)造例子,使邊數(shù)
.
如圖,過正方形的一邊相繼作
條鄰邊的平行線,正方形被剖分為
個矩形,易知,邊數(shù)
.
綜上所述,剖分圖中邊數(shù)的最大值為
.
所以,正方形剖分為2005個凸多邊形時,邊的最大值為6016.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,短軸長為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若橢圓
的左焦點為
,過點
的直線
與橢圓
交于
兩點,則在
軸上是否存在一個定點
使得直線
的斜率互為相反數(shù)?若存在,求出定點
的坐標(biāo);若不存在,也請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△
的三個內(nèi)角
、
、
所對應(yīng)的邊分別為
、
、
,復(fù)數(shù)
,
,(其中
是虛數(shù)單位),且
.
(1)求證:
,并求邊長
的值;
(2)判斷△
的形狀,并求當(dāng)
時,角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=
,PA=AD=2,AB=BC=1,點M、E分別是PA、PD的中點
![]()
(1)求證:CE//平面BMD
(2)點Q為線段BP中點,求直線PA與平面CEQ所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,在
處的切線方程為
.
(1)求
,
;
(2)若
,證明:
.
【答案】(1)
,
;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于
的方程組,解出即可;
(2)由(1)可知
,
,
由
,可得
,令
, 利用導(dǎo)數(shù)研究其單調(diào)性可得
,
從而證明
.
試題解析:((1)由題意
,所以
,
又
,所以
,
若
,則
,與
矛盾,故
,
.
(2)由(1)可知
,
,
由
,可得
,
令
,
,
令![]()
當(dāng)
時,
,
單調(diào)遞減,且
;
當(dāng)
時,
,
單調(diào)遞增;且
,
所以
在
上當(dāng)單調(diào)遞減,在
上單調(diào)遞增,且
,
故
,
故
.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導(dǎo)數(shù)證明不等式的方法,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
,
為參數(shù)),以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
,若直線
與曲線
相切;
(1)求曲線
的極坐標(biāo)方程;
(2)在曲線
上取兩點
,
與原點
構(gòu)成
,且滿足
,求面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計如下:
每月完成合格產(chǎn)品的件數(shù)(單位:百件) |
|
|
|
|
|
頻數(shù) | 10 | 45 | 35 | 6 | 4 |
男員工人數(shù) | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計數(shù)據(jù)填寫下面
列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計 | |
男員工 | |||
span>女員工 | |||
合計 |
(2)為提高員工勞動的積極性,工廠實行累進(jìn)計件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計件單價為1元;超出
件的部分,累進(jìn)計件單價為1.2元;超出
件的部分,累進(jìn)計件單價為1.3元;超出400件以上的部分,累進(jìn)計件單價為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機(jī)選取2人進(jìn)行工資調(diào)查,設(shè)實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)
與函數(shù)
表示同一個函數(shù);
②奇函數(shù)的圖象一定通過直角坐標(biāo)系的原點;
③函數(shù)
的圖象可由
的圖象向右平移1個單位得到;
④若函數(shù)
的定義域為
,則函數(shù)
的定義域為
;
⑤設(shè)函數(shù)
是在區(qū)間
上圖象連續(xù)的函數(shù),且
,則方程
在區(qū)間
上至少有一實根.
其中正確命題的序號是________.(填上所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國民法總則》(以下簡稱《民法總則》)自2017年10月1日起施行.作為民法典的開篇之作,《民法總則》與每個人的一生息息相關(guān).某地區(qū)為了調(diào)研本地區(qū)人們對該法律的了解情況,隨機(jī)抽取50人,他們的年齡都在區(qū)間
上,年齡的頻率分布及了解《民法總則》的入數(shù)如下表:
年齡 |
|
|
|
|
|
|
頻數(shù) | 5 | 5 | 10 | 15 | 5 | 10 |
了解《民法總則》 | 1 | 2 | 8 | 12 | 4 | 5 |
(1)填寫下面
列聯(lián)表,并判斷是否有
的把握認(rèn)為以45歲為分界點對了解《民法總則》政策有差異;
年齡低于45歲的人數(shù) | 年齡不低于45歲的人數(shù) | 合計 | |
了解 |
|
| |
不了解 |
|
| |
合計 |
(2)若對年齡在
,
的被調(diào)研人中各隨機(jī)選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解《民法總則》的人數(shù)為
,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
參考公式和數(shù)據(jù):![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com