【題目】在直角坐標系
中,曲線
的參數方程為
(
為參數),以原點
為極點,以
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的普通方程與曲線
的直角坐標方程;
(2)設
為曲線
上位于第一,二象限的兩個動點,且
,射線
交曲線
分別于
,求
面積的最小值,并求此時四邊形
的面積.
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)已知點
為拋物線
的焦點,點
在拋物線
上,且
.
![]()
(Ⅰ)求拋物線
的方程;
(Ⅱ)已知點
,延長
交拋物線
于點
,證明:以點
為圓心且與直線
相切的圓,必與直線
相切.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:
![]()
根據該折線圖可知,下列說法錯誤的是( )
A. 該超市2018年的12個月中的7月份的收益最高
B. 該超市2018年的12個月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等腰梯形
中(如圖1),
,
,
為線段
的中點,
、
為線段
上的點,
,現將四邊形
沿
折起(如圖2)
![]()
(1)求證:
平面
;
(2)在圖2中,若
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
的內角
所對的邊分別為
,_________,且
.現從:①
,②
,③
這三個條件中任選一個,補充在以上問題中,并判斷這樣的
是否存在,若存在,求
的面積
_________;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
,
、
分別是橢圓
長軸的左、右端點,
為橢圓上的動點.
(1)求
的最大值,并證明你的結論;
(2)設直線
的斜率為
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,曲線
的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標方程;
(2)若點
在曲線
上,點
在曲線
上,求
的最小值及此時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正方形
中,
,
分別為棱
和棱
的中點,則下列說法正確的是( )
A.
∥平面
B.平面
截正方體所得截面為等腰梯形
C.
平面
D.異面直線
與
所成的角為60°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com