【題目】某城市的公交公司為了方便市民出行,科學規劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發車間隔時間
與乘客等候人數
之間的關系,經過調查得到如下數據:
間隔時間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調查小組先從這
組數據中選取
組數據求線性回歸方程,再用剩下的
組數據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數
,再求
與實際等候人數
的差,若差值的絕對值都不超過
,則稱所求方程是“恰當回歸方程”.
(1)從這
組數據中隨機選取
組數據后,求剩下的
組數據的間隔時間不相鄰的概率;
(2)若選取的是后面
組數據,求
關于
的線性回歸方程
,并判斷此方程是否是“恰當回歸方程”;
(3)為了使等候的乘客不超過
人,試用(2)中方程估計間隔時間最多可以設置為多少(精確到整數)分鐘.
附:對于一組數據
,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:![]()
,
.
科目:高中數學 來源: 題型:
【題目】(本小題滿分13分)
如圖,已知拋物線
,過點
任作一直線與
相交于
兩點,過點
作
軸的平行線與直線
相交于點
(
為坐標原點).
![]()
(1)證明:動點
在定直線上;
(2)作
的任意一條切線
(不含
軸)與直線
相交于點
,與(1)中的定直線相交于點
,證明:
為定值,并求此定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
的頂點在原點,焦點在
軸上,且拋物線上有一點
到焦點的距離為5.
(1)求該拋物線
的方程;
(2)已知拋物線上一點
,過點
作拋物線的兩條弦
和
,且
,判斷直線
是否過定點?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(3,3),B(5,–1)到直線l的距離相等,且直線l過點P(0,1),則直線l的方程( )
A.y=1B.2x+y–1=0
C.2x+y–1=0或2x+y+1=0D.y=1或2x+y–1=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個小商店從一家有限公司購進21袋白糖,每袋白糖的標準質量是500g,為了了解這些白糖的質量情況,稱出各袋白糖的質量(單位:g)如下:
486 495 496 498 499 493 493 498 484 497 504 489 495 503
499 503 509 498 487 500 508
(1)21袋白糖的平均質量是多少?標準差s是多少?
(2)質量位于
與
之間有多少袋白糖?所占的百分比是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校有高中學生500人,其中男生320人,女生180人.有人為了獲得該校全體高中學生的身高信息,采用分層抽樣的方法抽取樣本,并觀測樣本的指標值(單位:cm),計算得男生樣本的均值為173.5,方差為17,女生樣本的均值為163.83,方差為30.03.
(1)根據以上信息,能夠計算出總樣本的均值和方差嗎?為什么?
(2)如果已知男、女樣本量按比例分配,你能計算出總樣本的均值和方差各為多少嗎?
(3)如果已知男、女的樣本量都是25,你能計算出總樣本的均值和方差各為多少嗎?它們分別作為總體均值和方差的估計合適嗎?為什么?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(
且
).
(1)判斷函數
的奇偶性并說明理由;
(2)當
時,判斷函數
在
上的單調性,并利用單調性的定義證明;
(3)是否存在實數
,使得當
的定義域為
時,值域為
?若存在,求出實數
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com