2009屆高考數學壓軸題系列訓練含答案及解析詳解四
1
(本小題滿分14分)
已知f(x)=
(x∈R)在區間[-1,1]上是增函數.
(Ⅰ)求實數a的值組成的集合A;
(Ⅱ)設關于x的方程f(x)=
的兩個非零實根為x1、x2.試問:是否存在實數m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由. w.w.w.k.s.5.u.c.o.m
本小題主要考查函數的單調性,導數的應用和不等式等有關知識,考查數形結合及分類討論思想和靈活運用數學知識分析問題和解決問題的能力.滿分14分.
解:(Ⅰ)f'(x)=
=
,
∵f(x)在[-1,1]上是增函數,
∴f'(x)≥0對x∈[-1,1]恒成立,
即x2-ax-2≤0對x∈[-1,1]恒成立. ①
設
(x)=x2-ax-2,
方法一:
(1)=1-a-2≤0,
①
-1≤a≤1,
(-1)=1+a-2≤0.
∵對x∈[-1,1],f(x)是連續函數,且只有當a=1時,f'(-1)=0以及當a=-1時,f'(1)=0
∴A={a|-1≤a≤1}. 方法二:

≥0,
<0,
①
或
(-1)=1+a-2≤0
(1)=1-a-2≤0
0≤a≤1
或 -1≤a≤0
-1≤a≤1.
∵對x∈[-1,1],f(x)是連續函數,且只有當a=1時,f'(-1)=0以及當a=-1時,f'(1)=0
∴A={a|-1≤a≤1}.
(Ⅱ)由
=
,得x2-ax-2=0, ∵△=a2+8>0
∴x1,x2是方程x2-ax-2=0的兩非零實根,
x1+x2=a,
∴
從而|x1-x2|=
=
.
x1x2=-2,
∵-1≤a≤1,∴|x1-x2|=
≤3.
要使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,
當且僅當m2+tm+1≥3對任意t∈[-1,1]恒成立,
即m2+tm-2≥0對任意t∈[-1,1]恒成立. ②
設g(t)=m2+tm-2=mt+(m2-2),
方法一:
g(-1)=m2-m-2≥0,
②

g(1)=m2+m-2≥0,
m≥2或m≤-2.
所以,存在實數m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.
方法二:
當m=0時,②顯然不成立;
當m≠0時,

m>0,
m<0,
②
或
g(-1)=m2-m-2≥
m≥2或m≤-2.
所以,存在實數m,使不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立,其取值范圍是{m|m≥2,或m≤-2}.
2.(本小題滿分12分)
如圖,P是拋物線C:y=
x2上一點,直線l過點P且與拋物線C交于另一點Q.
(Ⅰ)若直線l與過點P的切線垂直,求線段PQ中點M的軌跡方程;
(Ⅱ)若直線l不過原點且與x軸交于點S,與y軸交于點T,試求
的取值范圍.
本題主要考查直線、拋物線、不等式等基礎知識,求軌跡方程的方法,解析幾何的基本思想和綜合解題能力.滿分12分.
解:(Ⅰ)設P(x1,y1),Q(x2,y2),M(x0,y0),依題意x1≠0,y1>0,y2>0.
由y=
x2,
①
得y'=x.
∴過點P的切線的斜率k切= x1,
∴直線l的斜率kl=-
=-
,
∴直線l的方程為y-
x12=-
(x-x1),
方法一:
聯立①②消去y,得x2+
x-x12-2=0.
∵M是PQ的中點
x0=
=-
,
∴
y0=
x12-
(x0-x1).
消去x1,得y0=x02+
+1(x0≠0),
∴PQ中點M的軌跡方程為y=x2+
+1(x≠0).
方法二:
由y1=
x12,y2=
x22,x0=
,
得y1-y2=
x12-
x22=
(x1+x2)(x1-x2)=x0(x1-x2),
則x0=
=kl=-
,
∴x1=-
,
將上式代入②并整理,得
y0=x02+
+1(x0≠0),
∴PQ中點M的軌跡方程為y=x2+
+1(x≠0).
(Ⅱ)設直線l:y=kx+b,依題意k≠0,b≠0,則T(0,b).
分別過P、Q作PP'⊥x軸,QQ'⊥y軸,垂足分別為P'、Q',則

.
y=
x2
由 消去x,得y2-2(k2+b)y+b2=0. ③
y=kx+b
y1+y2=2(k2+b),
則
y1y2=b2.
方法一:
∴
|b|(
)≥2|b|
=2|b|
=2.
∵y1、y2可取一切不相等的正數,
∴
的取值范圍是(2,+
).
方法二:
∴
=|b|
=|b|
.
當b>0時,
=b
=
=
+2>2;
當b<0時,
=-b
=
.
又由方程③有兩個相異實根,得△=4(k2+b)2-4b2=4k2(k2+2b)>0,
于是k2+2b>0,即k2>-2b.
所以
>
=2.
∵當b>0時,
可取一切正數,
∴
的取值范圍是(2,+
).
方法三:
由P、Q、T三點共線得kTQ=KTP,
即
=
.
則x1y2-bx1=x2y1-bx2,即b(x2-x1)=(x2y1-x1y2).
于是b=
=-
x1x2.