南通市2009屆高三第二次調研測試
數 學 試 題
必做題部分
一、填空題:本大題共14小題,每小題5分,共70分.
1. 已知全集U={1,2,3,4,5},集合A={1,3,5},則
▲
.
2. 若復數z滿足zi=2+i(i是虛數單位),則z= ▲ .
3. 已知冪函數
的圖象過點
,則
= ▲
.
4. 如圖,一個空間幾何體的主視圖、左視圖、俯視圖為全
等的等腰直角三角形,如果直角三角形的直角邊長為1,
那么這個幾何體的表面積為 ▲ .
5. 設x0是方程8-x=lgx的解,且
,則k= ▲
.
6. 矩形ABCD中,
. 在矩形內任取一點P,則
的概率為 ▲
.
7. △ABC中,
,
,則
的最小值是 ▲
.
8. 已知
,
,則
等于 ▲
.
9. 右圖是由所輸入的x值計算y值的一個算法程序,
若x依次取數列
(
,n≤2009)的
項,則所得y值中的最小值為 ▲ .
10.
已知雙曲線![]()
的左、右焦點分別為F1、F2,P是雙曲線上一點,
且PF1⊥PF2,P F1
P F2 =4ab,則雙曲線的離心率是 ▲
.
11. 設函數f(x)=ax+b,其中a,b為常數,f1(x)=f(x),fn+1(x)=f [fn(x)],n=1,2,….
若f5(x)=32x+93, 則ab= ▲ .
12.
函數f(x)=
的值域為 ▲
.
13. 設函數
, A0為坐標原點,An為函數y=f(x)圖象上橫坐標為![]()
的點,向量
,向量i=(1,0),設
為向量
與向量i的夾角,則滿足
的最大整數n是 ▲
.
14. 已知l1和l2是平面內互相垂直的兩條直線,它們的交點為A,動點B、C分別在l1和l2
上,且
,過A、B、C三點的動圓所形成的區域的面積為 ▲
.
二、解答題:本大題共6小題,共90分,解答應寫出文字說明,證明過程或演算步驟.
15. (本題滿分14分)
某高級中學共有學生3000名,各年級男、女生人數如下表:
高一年級
高二年級
高三年級
女生
523
x
y
男生
487
490
z
已知在全校學生中隨機抽取1名,抽到高二年級女生的概率是0.17.
(1)問高二年級有多少名女生?
(2)現對各年級用分層抽樣的方法在全校抽取300名學生,問應在高三年級抽取多少
名學生?
16. (本題滿分14分)
如圖, ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,
AB=
(1)求證:平面PCF⊥平面PDE;
(2)求四面體PCEF的體積.
17 . (本題滿分15分)
△ABC中,角A的對邊長等于2,向量m=
,向量n=
.
(1)求m?n取得最大值時的角A;
(2)在(1)的條件下,求△ABC面積的最大值.
18. (本題滿分15分)
在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且
OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a. 分別以OD、OC為長、短半軸的
橢圓在矩形及其內部的部分為橢圓弧CD. 直線l:y=-x+b與橢圓弧相切,與AB交于
點E.
(1)求證:
;
(2)設直線l將矩形OABC分成面積相等的兩部分,
求直線l的方程;
(3)在(2)的條件下,設圓M在矩形及其內部,
且與l和線段EA都相切,求面積最大的圓M的
方程.
19. (本題滿分16分)
已知函數
的導數為
. 記函數
![]()
k為常數).
(1)若函數f(x)在區間
上為減函數,求
的取值范圍;
(2)求函數f(x)的值域.
20.(本題滿分16分)
設{an}是等差數列,其前n項的和為Sn.
(1)求證:數列
為等差數列;
(2)設{an}各項為正數,a1=
,a1≠a2,若存在互異正整數m,n,p滿足:①m+p=2n;
②
. 求集合
的元素個數;
(3)設bn=
(a為常數,a>0,a≠1,a1≠a2),數列{bn}前n項和為Tn. 對于正整數c,
d,e,f,若c<d<e<f,且c+f=d+e, 試比較(Tc)-1+(Tf)-1與(Td)-1+(Te)-1的大小.
附加題部分
21. (選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.
A. 選修4-1:幾何證明選講
如圖,AB是⊙O的直徑,弦BD、CA的延長線
相交于點E,EF垂直BA的延長線于點F.
求證:
.
B. 選修4-2:矩陣與變換
已知
, 求矩陣B.
C. 選修4-4:坐標系與參數方程.
在平面直角坐標系xOy中,動圓
(
R)的
圓心為
,求
的取值范圍.
D.選修4-5:不等式證明選講
已知函數
. 若不等式
(a¹0, a、bÎR)恒成
立,求實數x的范圍.
22. 必做題, 本小題10分.解答時應寫出文字說明、證明過程或演算步驟.
如圖,在底面邊長為1,側棱長為2的正四棱柱
中,P是側棱
上
的一點,
.
(1)試確定m,使直線AP與平面BDD1B1所成角為60º;
(2)在線段
上是否存在一個定點
,使得對任意的m,
⊥AP,并證明你的結論.
23.必做題, 本小題10分.解答時應寫出文字說明、證明過程或演算步驟.
某電器商經過多年的經驗發現本店每個月售出的電冰箱的臺數
是一個隨機變量,它的
分布列為:
;設每售出一臺電冰箱,電器商獲利300元.
如銷售不出,則每臺每月需花保管費100元. 問電器商每月初購進多少臺電冰箱才能使
月平均收益最大?
南通市2009屆高三第二次調研測試
必做題部分
【填空題答案】
1.{2,4}; 2.1-2i ;
3.
;
4.
; 5.7;
6.
; 7.
;
8.
; 9.17; 10.
;
11.6; 12.
;
13.3;
14.18
.
二、解答題:本大題共6小題,共90分,解答應寫出文字說明,證明過程或演算步驟.
15. (本題滿分14分)
某高級中學共有學生3000名,各年級男、女生人數如下表:
高一年級
高二年級
高三年級
女生
523
x
y
男生
487
490
z
已知在全校學生中隨機抽取1名,抽到高二年級女生的概率是0.17.
(1)問高二年級有多少名女生?
(2)現對各年級用分層抽樣的方法在全校抽取300名學生,問應在高三年級抽取多少
名學生?
【解】(1)由題設可知
, 所以x=510. ………………………6分
(2)高三年級人數為y+z=3000-(523+487+490+510)=990,………………9分
現用分層抽樣的方法在全校抽取300名學生,應在高三年級抽取的人數為:
名.
………………………12分
答:(1)高二年級有510名女生;(2)在高三年級抽取99名學生.……………14分
16. (本題滿分14分)
如圖, ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,
AB=
(1)求證:平面PCF⊥平面PDE;
(2)求四面體PCEF的體積.
【證明】(1)因為ABCD為矩形,AB=2BC, P為AB的中點,
所以三角形PBC為等腰直角三角形,∠BPC=45°. …………………………2分
同理可證∠APD=45°.
所以∠DPC=90°,即PC⊥PD. …………………………3分
又DE⊥平面ABCD,PC在平面ABCD內,所以PC⊥DE. ………………………4分
因為DE∩PD=D ,所以PC ⊥PDE . …………………………5分
又因為PC在平面PCF內,所以平面PCF⊥平面PDE. …………………………7分
【解】(2)因為CF⊥平面ABCD,DE⊥平面ABCD,
所以DE//CF. 又DC⊥CF,
所以
……………………… 10分
在平面ABCD內,過P作PQ⊥CD于Q,則
PQ//BC,PQ=BC=
因為BC⊥CD,BC⊥CF,
所以BC⊥平面PCEF,即PQ⊥平面PCEF,
亦即P到平面PCEF的距離為PQ=
………………………14分
(注:本題亦可利用
求得)
17 . (本題滿分15分)
△ABC中,角A的對邊長等于2,向量m=
,向量n=
.
(1)求m?n取得最大值時的角A的大小;
(2)在(1)的條件下,求△ABC面積的最大值.
【解】(1)m?n=2
-
. …………………3分
因為 A+B+C
,所以B+C
-A,
于是m?n=
+cosA=-2
=-2
.……………5分
因為
,所以當且僅當
=
,即A=
時,m?n取得最大值
.
故m?n取得最大值時的角A=
.
…………………………7分
(2)設角A、B、C所對的邊長分別為a、b、c,
由余弦定理,得 b2+c2-a2=2bccosA, …………………………9分
即bc+4=b2+c2≥2bc, ……………………… 11分
所以bc≤4,當且僅當b=c=2時取等號. ……………………… 12分
又S△ABC=
bcsinA=
bc≤
.
當且僅當a=b=c=2時,△ABC的面積最大為
. ………………………15分
18. (本題滿分15分)
在平面直角坐標系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且
OC=1,OA=a+1(a>1),點D在邊OA上,滿足OD=a. 分別以OD、OC為長、短半軸的
橢圓在
矩形及其內部的部分為橢圓弧CD. 直線l:y=-x+b與橢圓弧相切,與AB交于
點E.
(1)求證:
;
(2)設直線l將矩形OABC分成面積相等的兩部分,
求直線l的方程;
(3)在(2)的條件下,設圓M在矩形及其內部,
且與l和線段EA都相切,求面積最大的圓M
的方程.
【解】題設橢圓的方程為
.
…………………………1分
由
消去y得
. …………………………2分
由于直線l與橢圓相切,故△=(-
化簡得
.
①
…………………………4分
(2)由題意知A(a+1,0),B(a+1,1),C(0,1),
于是OB的中點為
.
…………………………5分
因為l將矩形OABC分成面積相等的兩部分,所以l過點
,
即
,亦即
.
②
…………………………6分
由①②解得
,故直線l的方程為
…………………………8分
(3)由(2)知
.
因為圓M與線段EA相切,所以可設其方程為
.………9分
因為圓M在矩形及其內部,所以
④ ……………………… 10分
圓M與 l相切,且圓M在l上方,所以
,即
.
………………………12分
代入④得
即
………………………13分
所以圓M面積最大時,
,這時,
.
故圓M面積最大時的方程為
………………………15分
19. (本題滿分16分)
已知函數
的導數為
. 記函數
.files/image069.gif)
k為常數).
(1)若函數f(x)在區間
上為減函數,求
的取值范圍;
(2)求函數f(x)的值域.
【解】(1)因為f(x)在區間
上為減函數,
所以對任意的
且
恒有
成立.
即
恒成立. …………………………3分
因為
,所以
對
且
時,恒成立.
又
<1,所以
…………………………6分
(2)
.
…………………………7分
下面分兩種情況討論:
(1)當
時,
是關于x的增函數,值域為.files/image236.gif)
…………………………9分
(2)當
時,又分三種情況:
①當
時,因為
,所以
即
.
所以f(x)是減函數,
.
又
,
當
,所以f(x)值域為
. ………………………10分
②當k=1時,
,
且f(x)是減函數,故f(x)值域是
.
………………………12分
③當
時,
是增函數,
,
.
下面再分兩種情況:
(a)當
時,
的唯一實根
,故
,
是關于x的增函數,值域為
;
(b)當
時,
的唯一實根
,
當
時,
;當
時,
;
所以f(x)
.
故f(x)的值域為
.
………………………15分
綜上所述,f(x)的值域為
;
(
);
(
);
(
).
………………………16分
20.(本題滿分16分)
設{an}是等差數列,其前n項的和為Sn.
(1)求證:數列
為等差數列;
(2)設{an}各項為正數,a1=
,a1≠a2,若存在互異正整數m,n,p滿足:①m+p=2n;
②
. 求集合
的元素個數;
(3)設bn=
(a為常數,a>0,a≠1,a1≠a2),數列{bn}前n項和為Tn. 對于正整數c,
d,e,f,若c<d<e<f,且c+f=d+e, 試比較(Tc)-1+(Tf)-1與(Td)-1+(Te)-1的大小.
【證】(1){an}為等差數列,設其公差為
,則
,于是
(常數),
故數列
是等差數列.
…………………………3分
【解】(2)因為{an}為等差數列,所以
是等差數列,
于是可設
為常數),從而
.
因為m+p=2n,所以由
兩邊平方得
,即
,
亦即
,………………………4分
于是
,兩邊平方并整理得
,即
.
…………………………6分
因為m≠p,所以
,從而
,而a1=
,所以
.
故
.
…………………………7分
所以.files/image333.gif)
.
因為15有4個正約數,所以數對(x,y)的個數為4個.
即集合
中的元素個數為4. ………………………9分
(3)因為
(常數),
所以數列{bn}是正項等比數列.
因為a1≠a2,所以等比數列{bn}的公比q≠1. ………………………10分
(解法一)
①
. ②
因為
,所以要證②,只要證
, ③…………………13分
而③.files/image348.gif)
. ④
④顯然成立,所以③成立,從而有
.…………………16分
(解法二)注意到當n>m時,
. ……………………12分
于是.files/image354.gif)
. ……………………14分
而
,故
. ……………………16分
(注:第(3)問只寫出正確結論的,給1分)
附加題部分
21. (選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.
A. 選修4-1:幾何證明選講
如圖,AB是⊙O的直徑,弦BD、CA的延長線
相交于點E,EF垂直BA的延長線于點F.
求證:
.
【證明】連結AD,因為AB為圓的直徑,所以∠ADB=90°,
又EF⊥AB,∠EFA=90°,所以A、D、E、F四點共圓.
所以∠DEA=∠DFA. …………………………10分
B. 選修4-2:矩陣與變換
已知
, 求矩陣B.
【解】設
則
, …………………………5分
故
………………………10分
C. 選修4-4:坐標系與參數方程.
在平面直角坐標系xOy中,動圓
(
R)的
圓心為
,求
的取值范圍..
【解】由題設得
(
為參數,
R).
…………………………5分
于是
,
所以
.
………………………10分
D.選修4-5:不等式證明選講
已知函數
. 若不等式
對a¹0, a、bÎR恒成立,
求實數x的范圍.
【解】 由
|且a¹0得
.
又因為
,則有2
.
…………………………5分
解不等式
得
……………………… 10分
22. 必做題, 本小題10分.解答時應寫出文字說明、證明過程或演算步驟.
如圖,在底面邊長為1,側棱長為2的正四棱柱
中,P是側棱
上
的一點,
.
(1)試確定m,使直線AP與平面BDD1B1所成角為60º;
(2)在線段
上是否存在一個定點
,使得對任意的m,
⊥AP,并證明你的結論.
【解】(1)建立如圖所示的空間直角坐標系,則
A(1,0,0), B(1,1,0), P(0,1,m),C(0,1,0), D(0,0,0),
B1(1,1,1), D1(0,0,2).
所以.files/image391.gif)
.files/image393.gif)
又由
的一個法向量.
設
與
所成的角為
,
則
=
,解得
.
故當
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com