題目列表(包括答案和解析)
已知中心在原點O,焦點F1、F2在x軸上的橢圓E經過點C(2,2),且拋物線
的焦點為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關系的運用。第一問中,設出橢圓的方程,然后結合拋物線的焦點坐標得到
,又因為
,這樣可知得到
。第二問中設直線l的方程為y=-x+m與橢圓聯立方程組可以得到
,再利用
可以結合韋達定理求解得到m的值和圓p的方程。
解:(Ⅰ)設橢圓E的方程為![]()
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為
…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得
…………………………6分
………………………7分
、
………………8分
![]()
………………………9分
![]()
……………………………10分
當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
已知曲線C:
(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當
解得
,所以m的取值范圍是![]()
(2)當m=4時,曲線C的方程為
,點A,B的坐標分別為
,
由
,得![]()
因為直線與曲線C交于不同的兩點,所以![]()
即![]()
設點M,N的坐標分別為
,則![]()
![]()
直線BM的方程為
,點G的坐標為![]()
因為直線AN和直線AG的斜率分別為![]()
所以
![]()
![]()
即
,故A,G,N三點共線。
已知中心在坐標原點,焦點在
軸上的橢圓C;其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點
(0,1), 問是否存在直線
與橢圓
交于
兩點,且
?若存在,求出
的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關系的運用。
第一問中,可設橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標準方程為![]()
第二問中,
假設存在這樣的直線
,設
,MN的中點為![]()
因為|ME|=|NE|所以MN
EF所以![]()
(i)其中若
時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范圍。
(Ⅰ) 可設橢圓的標準方程為
則由長軸長等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標準方程為![]()
(Ⅱ) 假設存在這樣的直線
,設
,MN的中點為![]()
因為|ME|=|NE|所以MN
EF所以![]()
(i)其中若
時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得
……② ……………………9分
則
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
綜上(i)(ii)可知,存在這樣的直線
,其斜率k的取值范圍是![]()
| x2 |
| 4 |
| y2 |
| 9 |
| 2 |
| π |
| 4 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com