題目列表(包括答案和解析)
已知△ABC的內(nèi)角
滿足
若
,
且
滿足:
,
,
為
與
的夾角.
(Ⅰ)求
;
(Ⅱ)求
;
【解析】第一問(wèn)利用二倍角公式化簡(jiǎn)∵
∴
∴
∴
或![]()
(舍去)又角B是△ABC的內(nèi)角∴![]()
第二問(wèn)中∵
,
,
為
與
的夾角
∴
=
又
∴
,
∴
=
=![]()
(Ⅰ) 解:∵
∴![]()
∴
∴
或![]()
(舍去)…………2分
又角B是△ABC的內(nèi)角∴
………………2分
(Ⅱ) 解:∵
,
,
為
與
的夾角
∴
=
………………2分
又
∴
,
………………2分
∴
=
=![]()
如圖,在三棱柱
中,
側(cè)面
,
為棱
上異于
的一點(diǎn),
,已知
,求:
(Ⅰ)異面直線
與
的距離;
(Ⅱ)二面角
的平面角的正切值.
【解析】第一問(wèn)中,利用建立空間直角坐標(biāo)系
解:(I)以B為原點(diǎn),
、
分別為Y,Z軸建立空間直角坐標(biāo)系.由于,![]()
![]()
在三棱柱
中有
,
設(shè)![]()
![]()
![]()
又
側(cè)面
,故
. 因此
是異面直線
的公垂線,則
,故異面直線
的距離為1.
(II)由已知有
故二面角
的平面角
的大小為向量
與
的夾角.
![]()
如圖所示的長(zhǎng)方體
中,底面
是邊長(zhǎng)為
的正方形,
為
與
的交點(diǎn),
,
是線段
的中點(diǎn).
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用
,又
平面
,
平面
,∴
平面
由
,
,又
,∴
平面
.
可得證明
(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面
的法向量.∵
,
,
∴
為平面
的法向量.∴利用法向量的夾角公式,
,
∴
與
的夾角為
,即二面角
的大小為
.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接
,則點(diǎn)
、
,
![]()
∴
,又點(diǎn)
,
,∴![]()
∴
,且
與
不共線,∴
.
又
平面
,
平面
,∴
平面
.…………………4分
(Ⅱ)∵
,![]()
∴
,
,即
,
,
又
,∴
平面
. ………8分
(Ⅲ)∵
,
,∴
平面
,
∴
為面
的法向量.∵
,
,
∴
為平面
的法向量.∴
,
∴
與
的夾角為
,即二面角
的大小為![]()
在
中,滿足
,
是
邊上的一點(diǎn).
(Ⅰ)若
,求向量
與向量
夾角的正弦值;
(Ⅱ)若
,
=m (m為正常數(shù)) 且
是
邊上的三等分點(diǎn).,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一問(wèn)中,利用向量的數(shù)量積設(shè)向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求
第二問(wèn)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,
=m所以
,![]()
(1)當(dāng)
時(shí),則
=
(2)當(dāng)
時(shí),則
=![]()
第三問(wèn)中,解:設(shè)
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以
即
于是
得![]()
從而![]()
運(yùn)用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image008.png">,
=m所以
,![]()
(1)當(dāng)
時(shí),則
=
;-2分
(2)當(dāng)
時(shí),則
=
;--2分
(Ⅲ)解:設(shè)
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220070463574796_ST.files/image029.png">
,
;
所以
即
于是
得![]()
從而
---2分
=
=![]()
=
…………………………………2分
令
,
則
,則函數(shù)
,在
遞減,在
上遞增,所以
從而當(dāng)
時(shí),![]()
材料:采訪零向量
W:你好!零向量.我是《數(shù)學(xué)天地》的一名記者,為了讓在校的高中生更好了解你,能不能對(duì)你進(jìn)行一次采訪呢?
零向量:當(dāng)然可以,我們向量王國(guó)隨時(shí)恭候大家的光臨,很樂(lè)意接受你的采訪,讓高中生朋友更加了解我,更好地為他們服務(wù).
W:好的,那就開(kāi)始吧!你的名字有什么特殊的含義嗎?
零向量:零向量就是長(zhǎng)度為零的向量,它與數(shù)字0有著密切的聯(lián)系,所以用0來(lái)表示我.
W:你與其他向量有什么共同之處呢?
零向量:既然我是向量王國(guó)的一個(gè)成員,就具有向量的基本性質(zhì),如既有大小又有方向,在進(jìn)行加、減法運(yùn)算時(shí)滿足交換律和結(jié)合律,還定義了與實(shí)數(shù)的積.
W:你有哪些值得驕傲的特殊榮耀呢?
零向量:首先,我的方向是不定的,可以與任意的向量平行.其次,我還有其他一些向量所沒(méi)有的特殊待遇:如我的相反向量仍是零向量;在向量的線性運(yùn)算中,我與實(shí)數(shù)0很有相似之處.
W:你有如此多的榮耀,那么是否還有煩惱之事呢?
零向量:當(dāng)然有了,在向量王國(guó)還有許多“權(quán)利和義務(wù)”卻大有把我排斥在外之意,如平行向量的定義,向量共線定理,兩向量夾角的定義都對(duì)我進(jìn)行了限制.所有這些確實(shí)給一些高中生帶來(lái)了很多苦惱,在此我向大家真誠(chéng)地說(shuō)一聲:對(duì)不起,這不是我的錯(cuò).但我還是很高興有這次機(jī)會(huì)與大家見(jiàn)面.
W:OK!采訪就到這里吧,非常感謝你的合作,再見(jiàn)!
零向量:Bye!
閱讀上面的材料回答下面問(wèn)題.
應(yīng)用零向量時(shí)應(yīng)注意哪些問(wèn)題?
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com