題目列表(包括答案和解析)
已知數列
中,
,
,數列
中,
,且點
在直線
上。
(1)求數列
的通項公式;
(2)求數列
的前
項和
;
(3)若
,求數列
的前
項和
;
【解析】第一問中利用數列的遞推關系式![]()
,因此得到數列
的通項公式;
第二問中,
在
即為:![]()
即數列
是以
的等差數列
得到其前n項和。
第三問中,
又
![]()
,利用錯位相減法得到。
解:(1)![]()
即數列
是以
為首項,2為公比的等比數列
![]()
……4分
(2)
在
即為:![]()
即數列
是以
的等差數列
![]()
……8分
(3)
又
![]()
![]()
①
②
①- ②得到
![]()
已知數列
滿足
(I)求數列
的通項公式;
(II)若數列
中
,前
項和為
,且
證明:
![]()
【解析】第一問中,利用
,![]()
∴數列{
}是以首項a1+1,公比為2的等比數列,即
![]()
第二問中,
![]()
進一步得到得
即![]()
即
是等差數列.
然后結合公式求解。
解:(I) 解法二、
,![]()
∴數列{
}是以首項a1+1,公比為2的等比數列,即
![]()
(II)
………②
由②可得:
…………③
③-②,得
即
…………④
又由④可得
…………⑤
⑤-④得![]()
即
是等差數列.
![]()
![]()
![]()
![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com