題目列表(包括答案和解析)
已知數(shù)列
的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項公式;
(Ⅱ) 設(shè)
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用
關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當(dāng)
時,由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設(shè)
,
,
則
.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數(shù)學(xué)歸納法)①當(dāng)
時,
,命題成立;
②假設(shè)
時,命題成立,即
,
則當(dāng)
時,![]()
![]()
即![]()
即![]()
故當(dāng)
時,命題成立.
綜上可知,對一切非零自然數(shù)
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
已知遞增等差數(shù)列
滿足:
,且
成等比數(shù)列.
(1)求數(shù)列
的通項公式
;
(2)若不等式
對任意
恒成立,試猜想出實數(shù)
的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列
公差為
,
由題意可知
,即
,解得d,得到通項公式,第二問中,不等式等價于
,利用當(dāng)
時,
;當(dāng)
時,
;而
,所以猜想,
的最小值為
然后加以證明即可。
解:(1)設(shè)數(shù)列
公差為
,由題意可知
,即
,
解得
或
(舍去). …………3分
所以,
. …………6分
(2)不等式等價于
,
當(dāng)
時,
;當(dāng)
時,
;
而
,所以猜想,
的最小值為
. …………8分
下證不等式
對任意
恒成立.
方法一:數(shù)學(xué)歸納法.
當(dāng)
時,
,成立.
假設(shè)當(dāng)
時,不等式
成立,
當(dāng)
時,
,
…………10分
只要證
,只要證
,
只要證
,只要證
,
只要證
,顯然成立.所以,對任意
,不等式
恒成立.…14分
方法二:單調(diào)性證明.
要證 ![]()
只要證
,
設(shè)數(shù)列
的通項公式
, …………10分
, …………12分
所以對
,都有
,可知數(shù)列
為單調(diào)遞減數(shù)列.
而
,所以
恒成立,
故
的最小值為
.
中國籃球職業(yè)聯(lián)賽某賽季的總決賽在某兩隊之間角逐,采用七局四勝制,即若有一隊先勝四場,則此隊獲勝,比賽就此結(jié)束.因兩隊實力相當(dāng),每場比賽獲勝的可能性相等.據(jù)以往資料統(tǒng)計,第一場比賽組織者可獲門票收入30萬元,以后每場比賽門票收入都比上一場增加10萬元,當(dāng)兩隊決出勝負(fù)后.問:
(1)組織者在此次決賽中要獲得門票收入為180萬元須比賽多少場?
(2)組織者在此次決賽中獲得門票收入不少于330萬元的概率為多少?
分析:本題是一個概率與數(shù)列的綜合試題,可以首先求出收入的通項公式,從而得出比賽的場數(shù),再確定其概率.
2007年12月29日第十屆全國人大常委會第三十一次會議表決通過了《關(guān)于修改〈中華人民共和國個人所得稅法〉的決定》,將個人所得稅工資、薪金所得減除費用標(biāo)準(zhǔn)由每月1600元提高到每月2000元,同時明確自2008年3月1日起施行.即公民全月工資,薪金所得不超過2000元的部分不必納稅,超過2000元的部分應(yīng)納稅,此項稅款按下表分段累進計算:
注明:上表中“全月應(yīng)納稅所得額”是從月工資、薪金收入中減去2000元后的余額.例如某人月工資、薪金收入為3000元,減去2000元,應(yīng)納稅所得額為1000元,由稅率表知其中500元稅率為5%,另外500元的稅率為10%,所以此人應(yīng)納個人所得稅為500×5%+500×10%=75元.
(1)請寫出月工資,薪金的個人所得稅y關(guān)于工資,薪金收入x(0<x≤5000)的函數(shù)表達式;
(2)某高中數(shù)學(xué)教師在2008年10月份繳納的個人所得稅是40元,試求他這個月的工資,薪金收入是多少?
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com