題目列表(包括答案和解析)
下列命題中正確的是 ( )
A.若p∨q為真命題,則p∧q為真命題
B.“x=5”是“x2-4x-5=0”的充分不必要條件
C.命題“若x<-1,則x2-2x-3>0”的否定為:“若x≥-1,則x2-2x-3≤0”
D.已知命題p:∃x∈R,x2+x-1<0,則綈p:∃x∈R,x2+x-1≥0
已知
是公差為d的等差數列,
是公比為q的等比數列
(Ⅰ)若
,是否存在
,有
?請說明理由;
(Ⅱ)若
(a、q為常數,且aq
0)對任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若
試確定所有的p,使數列
中存在某個連續p項的和式數列中
的一項,請證明.
【解析】第一問中,由
得
,整理后,可得![]()
、
,
為整數
不存在
、
,使等式成立。
(2)中當
時,則![]()
即
,其中
是大于等于
的整數
反之當
時,其中
是大于等于
的整數,則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數
(3)中設
當
為偶數時,
式左邊為偶數,右邊為奇數,
當
為偶數時,
式不成立。由
式得
,整理![]()
當
時,符合題意。當
,
為奇數時,![]()
結合二項式定理得到結論。
解(1)由
得
,整理后,可得![]()
、
,
為整數
不存在
、
,使等式成立。
(2)當
時,則![]()
即
,其中
是大于等于
的整數反之當
時,其中
是大于等于
的整數,則
,
顯然
,其中![]()
![]()
、
滿足的充要條件是
,其中
是大于等于
的整數
(3)設
當
為偶數時,
式左邊為偶數,右邊為奇數,
當
為偶數時,
式不成立。由
式得
,整理![]()
當
時,符合題意。當
,
為奇數時,![]()
![]()
由
,得
![]()
當
為奇數時,此時,一定有
和
使上式一定成立。
當
為奇數時,命題都成立
已知
,
是橢圓![]()
左右焦點,它的離心率
,且被直線
所截得的線段的中點的橫坐標為![]()
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設
是其橢圓上的任意一點,當
為鈍角時,求
的取值范圍。
【解析】解:因為第一問中,利用橢圓的性質由
得
所以橢圓方程可設為:
,然后利用
得
得
橢圓方程為![]()
第二問中,當
為鈍角時,
,
得![]()
所以
得![]()
解:(Ⅰ)由
得
所以橢圓方程可設為:![]()
3分
得
得
橢圓方程為
3分
(Ⅱ)當
為鈍角時,
,
得
3分
所以
得![]()
設
為實數,首項為
,公差為
的等差數列
的前n項和為
,滿足![]()
(1)若
,求
及
;
(2)求d的取值范圍.
【解析】本試題主要考查了數列的求和的運用以及通項公式的運用。第一問中,利用
和已知的
,得到結論
第二問中,利用首項和公差表示
,則方程是一個有解的方程,因此判別式大于等于零,因此得到d的范圍。
解:(1)因為設
為實數,首項為
,公差為
的等差數列
的前n項和為
,滿足![]()
所以![]()
(2)因為![]()
得到關于首項的一個二次方程,則方程必定有解,結合判別式求解得到![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com