題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知
:
=1:2,
:
=3:2,連結AQ,BP,設它們交于點R,若
=a,
=b.
(1)用a與 b表示
;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角
的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運動,并且滿足
。
(1)求動點P的軌跡方程。
(2)若過點A的直線L與動點P的軌跡交于M、N兩點,且![]()
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數
,a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論
的單調性;
(Ⅱ)設a=3,求
在區間{1,
}上值域。期中e=2.71828…是自然對數的底數。
(本小題滿分14分)
已知數列{an}和{bn}滿足:a1=λ,an+1=
其中λ為實數,n為正整數。
(Ⅰ)對任意實數λ,證明數列{an}不是等比數列;
(Ⅱ)試判斷數列{bn}是否為等比數列,并證明你的結論;
(Ⅲ)設0<a<b,Sn為數列{bn}的前n項和。是否存在實數λ,使得對任意正整數n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),
是等腰直角三角形,
,
、
分別為
、
的中點,將
沿
折起, 使
在平面
上的射影
恰為
的中點,得到圖(2).
(Ⅰ)求證:
;
(Ⅱ)求三棱錐
的體積.
![]()
天津精通高考復讀學校數學教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用
代替
得
4.
5.
,
或
6.
7.略
8.

二、填空題:9.60; 10. 15:10:20 ; 11.
; 12.
;
13.0.74 ; 14. ①、
;②、圓;③.
提示:
9.
10.
,
,
11.
,
12.
,
,
,
,
13.
14.略
三、解答題
15. 解:(1)
.
(2)設抽取
件產品作檢驗,則
,
,得:
,即 
故至少應抽取8件產品才能滿足題意.
16. 解:由題意得
,
,原式可化為
,
而
,
故原式=
.
17. 解:(1)顯然
,連接
,∵
,
,
∴
.由已知
,∴
,
.
∵
∽
,
,
∴
即
.
∴
.
(2)
當且僅當
時,等號成立.此時
,即
為
的中點.于是由
,知平面
,
是其交線,則過
作
。
∴
就是
與平面
所成的角.由已知得
,
,
∴
,
,
.
(3) 設三棱錐
的內切球半徑為
,則

∵
,
,
,
,
,
∴
.
18. 解: (1)
,
(2) ∵
,
∴當
時,
∴當
時,
,
∵
,
,
,
.
∴
的最大值為
或
中的最大者.
∵ 
∴ 當
時,
有最大值為
.
19.(1)解:∵函數
的圖象過原點,
∴
即
,
∴
.
又函數
的圖象關于點
成中心對稱,
∴
,
.
(2)解:由題意有
即
,
即
,即
.
∴數列{
}是以1為首項,1為公差的等差數列.
∴
,即
. ∴
.
∴
,
,
,
.
(3)證明:當
時,

故
20. (1)解:∵
,又
,
∴
.
又∵
,且
∴
.
(2)解:由
,
,
猜想
(3)證明:用數學歸納法證明:
①當
時,
,猜想正確;
②假設
時,猜想正確,即
1°若
為正奇數,則
為正偶數,
為正整數,
2°若
為正偶數,則
為正整數,
,又
,且
所以
即當
時,猜想也正確
由①,②可知,
成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1.
即

2.
即 
3.
即
,也就是
,
4.先確定是哪兩個人的編號與座位號一致,有
種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形: