題目列表(包括答案和解析)
(本小題滿分12分)
已知函數
,且
。
(I)試用含
的代數式表示
;
(Ⅱ)求
的單調區間;
(Ⅲ)令
,設函數
在
處取得極值,記點
,證明:線段
與曲線
存在異于
、
的公共點。
(本小題滿分12分)
已知點
,過點
作拋物線![]()
的切線
,切點
在第二象限,如圖.
(Ⅰ)求切點
的縱坐標;
(Ⅱ)若離心率為
的橢圓
恰好經過切點
,設切線
交橢圓的另一點為
,記切線
的斜率分別為
,若
,求橢圓方程.
21(本小題滿分12分)
已知函數
.
(1)討論函數
的單調性;
(2)當
時,
恒成立,求實數
的取值范圍;
(3)證明:![]()
.
22.選修4-1:幾何證明選講
如圖,
是圓
的直徑,
是弦,
的平分線
交圓
于點
,
,交
的延長線于點
,
交
于點
。
(1)求證:
是圓
的切線;
(2)若
,求
的值。
23.選修4—4:坐標系與參數方程
在平面直角坐標系中,直線
過點
且傾斜角為
,以坐標原點為極點,
軸的非負半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,直線
與曲線
相交于
兩點;
(1)若
,求直線
的傾斜角
的取值范圍;
(2)求弦
最短時直線
的參數方程。
24. 選修4-5 不等式選講
已知函數![]()
(I)試求
的值域;
(II)設
,若對
,恒有
成立,試求實數a的取值范圍。
天津精通高考復讀學校數學教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用
代替
得
4.
5.
,
或
6.
7.略
8.

二、填空題:9.60; 10. 15:10:20 ; 11.
; 12.
;
13.0.74 ; 14. ①、
;②、圓;③.
提示:
9.
10.
,
,
11.
,
12.
,
,
,
,
13.
14.略
三、解答題
15. 解:(1)
.
(2)設抽取
件產品作檢驗,則
,
,得:
,即 
故至少應抽取8件產品才能滿足題意.
16. 解:由題意得
,
,原式可化為
,
而
,
故原式=
.
17. 解:(1)顯然
,連接
,∵
,
,
∴
.由已知
,∴
,
.
∵
∽
,
,
∴
即
.
∴
.
(2)
當且僅當
時,等號成立.此時
,即
為
的中點.于是由
,知平面
,
是其交線,則過
作
。
∴
就是
與平面
所成的角.由已知得
,
,
∴
,
,
.
(3) 設三棱錐
的內切球半徑為
,則

∵
,
,
,
,
,
∴
.
18. 解: (1)
,
(2) ∵
,
∴當
時,
∴當
時,
,
∵
,
,
,
.
∴
的最大值為
或
中的最大者.
∵ 
∴ 當
時,
有最大值為
.
19.(1)解:∵函數
的圖象過原點,
∴
即
,
∴
.
又函數
的圖象關于點
成中心對稱,
∴
,
.
(2)解:由題意有
即
,
即
,即
.
∴數列{
}是以1為首項,1為公差的等差數列.
∴
,即
. ∴
.
∴
,
,
,
.
(3)證明:當
時,

故
20. (1)解:∵
,又
,
∴
.
又∵
,且
∴
.
(2)解:由
,
,
猜想
(3)證明:用數學歸納法證明:
①當
時,
,猜想正確;
②假設
時,猜想正確,即
1°若
為正奇數,則
為正偶數,
為正整數,
2°若
為正偶數,則
為正整數,
,又
,且
所以
即當
時,猜想也正確
由①,②可知,
成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1.
即

2.
即 
3.
即
,也就是
,
4.先確定是哪兩個人的編號與座位號一致,有
種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形: