題目列表(包括答案和解析)
已知
R,函數(shù)
.
⑴若函數(shù)
沒有零點,求實數(shù)
的取值范圍;
⑵若函數(shù)
存在極大值,并記為
,求
的表達式;
⑶當(dāng)
時,求證:
.
【解析】(1)求導(dǎo)研究函數(shù)f(x)的最值,說明函數(shù)f(x)的最大值<0,或f(x)的最小值>0.
(2)根據(jù)第(1)問的求解過程,直接得到g(m).
(3)構(gòu)造函數(shù)
,證明
即可,然后利用導(dǎo)數(shù)求g(x)的最小值.
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
| 4x+a |
| x2+1 |
| 12 |
| 5 |
| 12 |
| 25 |
| 2 |
| x |
| 8 |
| 5 |
一. 填空題(每題4分,共48分)
1. {0}; 2. 四; 3. 12; 4. 0; 5. 4; 6. 理
、文7; 7. 理
; 12.
(或
).
二.選擇題(每題4分,共16分)
13.D; 14.B; 15.C; 16.理B、文B.
三. 解答題. 17.(本題滿分12分)解:由已知得
(3分)
∴
, ∴
(6分)
∴
又
,即
,∴
(9分)
∴
的面積S=
.
(12分)
18.(本題滿分12分)解:∵
,∴
(5分)
∵
,欲使
是純虛數(shù),
而
=
(7分)
∴
, 即
(11分)
∴當(dāng)
時,
是純虛數(shù).
(12分)
19.(本題滿分14分,第1小題滿分9分,第2小題滿分5分)
解:(1)依題意設(shè)
,則
,
(2分)
(4分) 而
,
∴
,即
, (6分) ∴
(7分)
從而
.
(9分)
(2)
平面
,
∴直線
到平面
的距離即點
到平面
的距離
(2分)
也就是
的斜邊
上的高,為
.
(5分)
20.(本題滿分14分,第1小題滿分8分,第2小題滿分6分)
解:(1)不正確.
(2分)
沒有考慮到
還可以小于
.
(3分)
正確解答如下:
令
,則
,
當(dāng)
時,
,即
(5分)
當(dāng)
時,
,即
(7分)
∴
或
,即
既無最大值,也無最小值.
(8分)
(2)(理)對于函數(shù)
,令2006年第二學(xué)期高三質(zhì)量監(jiān)控考試數(shù)學(xué)試卷.files\image305.gif)
①當(dāng)
時,
有最小值,
,
(9分)
當(dāng)
時,
,即
,當(dāng)
時,即2006年第二學(xué)期高三質(zhì)量監(jiān)控考試數(shù)學(xué)試卷.files\image319.gif)
∴
或
,即
既無最大值,也無最小值.
(10分)
②當(dāng)
時,
有最小值,
,
此時,
,∴
,即
,
既無最大值,也無最小值 .(11分)
③當(dāng)
時,
有最小值,
,即
(12分)
∴
,即
,
∴當(dāng)
時,
有最大值
,沒有最小值.
(13分)
∴當(dāng)
時,
既無最大值,也無最小值。
當(dāng)
時,
有最大值
,此時
;沒有最小值.
(14分)
(文)∵
, ∴
(12分)
∴函數(shù)
的最大值為
(當(dāng)
時)而無最小值. (14分)
21.(本滿分16分,第1、2小題滿分各4分,第3小題滿分8分)
解:(1)
(4分)
(2)由
解得
(7分)
所以第
個月更換刀具.
(8分)
(3)第
個月產(chǎn)生的利潤是:
(9分)
個月的總利潤:
(11分)
個月的平均利潤:
(13分)
由
且2006年第二學(xué)期高三質(zhì)量監(jiān)控考試數(shù)學(xué)試卷.files\image372.gif)
在第7個月更換刀具,可使這7個月的平均利潤
最大(13.21萬元) (14分)此時刀具厚度為
(mm)
(16分)
22.(本題滿分18分,第1、2小題滿分各4分,第3小題滿分10分)
解:(1)
(4分)
(2)各點的橫坐標為:
(8分)
(3)過
作斜率為
的直線
交拋物線于另一點
,
(9分)
則一般性的結(jié)論可以是:
點
的相鄰橫坐標之和構(gòu)成以
為首項和公比的等比數(shù)列(或:點
無限趨向于某一定點,且其橫(縱)坐標之差成等比數(shù)列;或:
無限趨向于某一定點,且其橫(縱)坐標之差成等比數(shù)列,等)(12分)
證明:設(shè)過點
作斜率為
的直線交拋物線于點
由
得
或
;
點
的橫坐標為
,則
(14分)
于是
兩式相減得:
(16分)
2006年第二學(xué)期高三質(zhì)量監(jiān)控考試數(shù)學(xué)試卷.files\image419.gif)
2006年第二學(xué)期高三質(zhì)量監(jiān)控考試數(shù)學(xué)試卷.files\image421.gif)
=
2006年第二學(xué)期高三質(zhì)量監(jiān)控考試數(shù)學(xué)試卷.files\image425.gif)
故點
無限逼近于點
同理
無限逼近于點
(18分)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com