題目列表(包括答案和解析)
設向量
.
(Ⅰ)求
;
(Ⅱ)若函數
,求
的最小值、最大值.
【解析】第一問中,利用向量的坐標表示,表示出數量積公式可得
![]()
![]()
第二問中,因為
,即
換元法
令
得到最值。
解:(I)![]()
![]()
![]()
![]()
(II)由(I)得:![]()
令![]()
.
時,![]()
給出問題:已知
滿足
,試判定
的形狀.某學生的解答如下:
解:(i)由余弦定理可得,
,
![]()
,
![]()
,
故
是直角三角形.
(ii)設
外接圓半徑為
.由正弦定理可得,原式等價于![]()
![]()
,
故
是等腰三角形.
綜上可知,
是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果. .
在
中,滿足
,
是
邊上的一點.
(Ⅰ)若
,求向量
與向量
夾角的正弦值;
(Ⅱ)若
,
=m (m為正常數) 且
是
邊上的三等分點.,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一問中,利用向量的數量積設向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求
第二問因為
,
=m所以
,![]()
(1)當
時,則
=
(2)當
時,則
=![]()
第三問中,解:設
,因為![]()
,
;
所以
即
于是
得![]()
從而![]()
運用三角函數求解。
(Ⅰ)解:設向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因為
,
=m所以
,![]()
(1)當
時,則
=
;-2分
(2)當
時,則
=
;--2分
(Ⅲ)解:設
,因為![]()
,
;
所以
即
于是
得![]()
從而
---2分
=
=![]()
=
…………………………………2分
令
,
則
,則函數
,在
遞減,在
上遞增,所以
從而當
時,![]()
小明用下面的方法求出方程
的解,請你仿照他的方法求出下面方程
的解為 ;
|
方程 |
換元法得新方程 |
解新方程 |
檢驗 |
求原方程的解 |
|
|
令 則 |
t=2 |
t =2 > 0 |
所以x=4 |
已知函數
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對任意的
有
≤
成立,求實數
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域為![]()
![]()
由
,得![]()
當x變化時,
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當
時,取
,有
,故
時不合題意.當
時,令
,即![]()
![]()
令
,得![]()
①當
時,
,
在
上恒成立。因此
在
上單調遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當
時,
,對于
,
,故
在
上單調遞增.因此當取
時,
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當n=1時,不等式左邊=
=右邊,所以不等式成立.
當
時,![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com