題目列表(包括答案和解析)
已知函數f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。
(1)f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,
不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,
∵g′(x)=
-2x+1=
(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-
,又a<0,
∴a的取值范圍是![]()
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內?
(II)當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.
![]()
【解析】本題主要考查函數的應用,導數及均值不等式的應用等,考查學生分析問題和解決問題的能力 第一問要利用相似比得到結論。
(I)由SAMPN > 32 得
> 32 ,
∵x >2,∴
,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+
)
第二問,
當且僅當![]()
(3)令![]()
∴當x
> 4,y′> 0,即函數y=
在(4,+∞)上單調遞增,∴函數y=
在[6,+∞]上也單調遞增.
∴當x=6時y=
取得最小值,即SAMPN取得最小值27(平方米).
已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數m的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用。第一問,利用函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數求導數,判定單調性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意![]()
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
![]()
一、 選擇題:CACDA,ADCBB.
二、
填空題:11.(-4,2) 12.
13.-4 14. 12
15. .files/image137.gif)
三、解答題(16~18題,每題13分,19-21題12分,共75分)
16.解:∵.files/image113.gif)
∴.files/image139.gif)
∴.files/image141.gif)
.files/image145.gif)
17.證明一:(利用共線向量的判定定理證明)
以
作為基底,有:
,
,從而
, 所以A、E、F共線。
證明二:(利用三點共線的判定定理證明)
,而:
,所以A、E、F共線。
(可以建立坐標系,利用求出等比分點坐標公式求出E、F的坐標,再證明A、E、F共線)
18.(1)f(x)=
sin2x-
(1+cos2x)+
=
sin2x-
cos2x
=sin(2x-
) 5分
∴T=
=π 2分
(2)函數y=f(x)的圖象按
=(φ,0)(φ>0)平移后,得y=sin(2(x-φ)-
) 2分,此函數圖象對稱軸方程為2(x-φ)-
=kπ+
k∈Z ,又f(x)平移后關于y軸對稱,∴x=0滿足上式有2(0-φ)-
=kπ+
,∴φ=-
π-
k∈Z
2分
∵φ>0∴當k=-1時,φmin=
2分
19.(1)由已知得
-
=(sinθ,2)-(-2,co sθ)=(sinθ+2,2-cosθ) 1分 ∵
⊥
-
∴
?(
-
)=0
∴(cosθ,sinθ)(sinθ+2,2-cosθ)=0
∴cosθ(sinθ+2)+sinθ(2-cosθ)=0 2分
∴2cosθ+2sinθ=0 ∴tanθ=-1 ∵θ∈(-π,π)
∴θ=-
或θ=
3分
(2)由已知
=
+
-
=(cosθ+sinθ+2,sinθ+2-cosθ) 1分
∴|
|2=(cosθ+sinθ+2)2+(sinθ+2-cosθ)2=10+8sinθ 2分
∵|
|≤
∴10+8sinθ≤14 ∴sinθ≤
∵θ∈(-π,π)
∴θ∈
3分
20.輪船從點C到點B耗時60分鐘,從點B到點E耗時20分鐘,而船始終勻速,可見BC=3EB
2分
設EB=x,則BC=3x,由條件知∠BAE=60°,在△ABE中,由正弦定理得
①
在△ABC中,由正弦定理得
②
2分
由條件∠BAC=30°+30°=60° ∴sin∠BAC=sin∠BAE
又∠ABC+∠ABE=180° ∴sin∠BAC=sin(180°-∠ABC)=sin∠ABE 2分
結合①②得
=
∴AC=3AE 2分
在△ACE中,由余弦定理,得
CE2=AC2+AE2-2AC?AE?cos120°=9AE2+AE2+3AE2=13AE2=13×
∴CE=20 2分 ∴BC=15 ∴船速v=15km/t 2分
21.解: 可以組建命題一:△ABC中,若a、b、c成等差數列,求證:(1)0<B≤.files/image099.gif)
(2)
;
命題二:△ABC中,若a、b、c成等差數列求證:(1)0<B≤.files/image099.gif)
(2)1<
≤.files/image201.gif)
命題三:△ABC中,若a、b、c成等差數列,求證:(1).files/image197.gif)
(2)1<
≤.files/image201.gif)
命題四:△ABC中,若a、b、c成等比數列,求證:(1)0<B≤.files/image099.gif)
(2)1<
≤.files/image201.gif)
………………………………………………………………………………………………6分
下面給出命題一、二、三的證明:
(1)∵a、b、c成等差數列∴2b=a+c,∴b=.files/image206.gif)
≥
且B∈(0,π),∴0<B≤.files/image099.gif)
(2)
(3).files/image214.gif)
∵0<B≤
∴
∴
∴.files/image220.gif)
下面給出命題四的證明:
(4)∵a、b、c成等比數列∴b2=a+c,
.files/image222.gif)
且B∈(0,π),∴0<B≤
…14分
評分時若構建命題的結論僅一個但給出了正確證明,可判7分;若構建命題完全正確但論證僅正確給出一個,可判10分;若組建命題出現了錯誤,應判0分,即堅持錯不得分原則
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com