題目列表(包括答案和解析)
已知點(diǎn)
為圓
上的動點(diǎn),且
不在
軸上,
軸,垂足為
,線段
中點(diǎn)
的軌跡為曲線
,過定點(diǎn)![]()
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點(diǎn)。
(I)求曲線
的方程;
(II)試證明:在
軸上存在定點(diǎn)
,使得
總能被
軸平分
【解析】第一問中設(shè)
為曲線
上的任意一點(diǎn),則點(diǎn)
在圓
上,
∴
,曲線
的方程為![]()
第二問中,設(shè)點(diǎn)
的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得 ![]()
∵
,∴![]()
確定結(jié)論直線
與曲線
總有兩個公共點(diǎn).
然后設(shè)點(diǎn)
,
的坐標(biāo)分別
,
,則
,
要使
被
軸平分,只要
得到。
(1)設(shè)
為曲線
上的任意一點(diǎn),則點(diǎn)
在圓
上,
∴
,曲線
的方程為
. ………………2分
(2)設(shè)點(diǎn)
的坐標(biāo)為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得
,……5分
∵
,∴
,
∴直線
與曲線
總有兩個公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓
的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點(diǎn)
,
的坐標(biāo)分別
,
,則
,
要使
被
軸平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
當(dāng)
時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點(diǎn)
,使得
總能被
軸平分
解關(guān)于
的不等式:
.
(12分)
甲、乙兩名籃球運(yùn)動員每場比賽得分情況的莖葉圖如圖,則甲和乙得分的中位數(shù)的和是 ( )
![]()
56分
57分
58分
59分
某種汽車,購車費(fèi)用是10萬元,每年使用的保險費(fèi)和汽油費(fèi)為
萬元,年維修費(fèi)第一年為
萬元,以后逐年遞增
萬元,問這種汽車使用多少年時,它的年平均費(fèi)用最少? (12分)
解關(guān)于
的不等式:
.
(12分)
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com