題目列表(包括答案和解析)
已知函數(shù)
.(
)
(1)若
在區(qū)間
上單調(diào)遞增,求實數(shù)
的取值范圍;
(2)若在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.然后求解得到。
解:(1)
在區(qū)間
上單調(diào)遞增,
則
在區(qū)間
上恒成立. …………3分
即
,而當(dāng)
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當(dāng)
,即
時,在(
,+∞)上有
,此時
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng)
,即
時,同理可知,
在區(qū)間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使
在此區(qū)間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當(dāng)
時,函數(shù)
的圖象恒在直線
下方.
已知函數(shù)
,
.
(1)設(shè)
是函數(shù)
的一個零點,求
的值;
(2)求函數(shù)
的單調(diào)遞增區(qū)間.
【解析】第一問利用題設(shè)知![]()
.因為
是函數(shù)
的一個零點,所以![]()
即
(![]()
所以![]()
第二問![]()
![]()
![]()
當(dāng)
,即
(
)時,
函數(shù)
是增函數(shù),
故函數(shù)
的單調(diào)遞增區(qū)間是
(
)
設(shè)函數(shù)
.
(Ⅰ) 當(dāng)
時,求
的單調(diào)區(qū)間;
(Ⅱ) 若
在
上的最大值為
,求
的值.
【解析】第一問中利用函數(shù)
的定義域為(0,2),
.
當(dāng)a=1時,
所以
的單調(diào)遞增區(qū)間為(0,
),單調(diào)遞減區(qū)間為(
,2);
第二問中,利用當(dāng)
時,
>0, 即
在
上單調(diào)遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數(shù)
的定義域為(0,2),
.
(1)當(dāng)
時,
所以
的單調(diào)遞增區(qū)間為(0,
),單調(diào)遞減區(qū)間為(
,2);
(2)當(dāng)
時,
>0, 即
在
上單調(diào)遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
給出定義:若
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.函數(shù)
.對于函數(shù)
,現(xiàn)給出如下判斷:
①函數(shù)
是偶函數(shù);
②函數(shù)
是周期函數(shù); ks5u
③函數(shù)
在區(qū)間(
,
]上單調(diào)遞增;
④函數(shù)
的圖象關(guān)于直線
(k∈Z)對稱.
則判斷正確的結(jié)論的個數(shù)是( )
A.1 B.2 C.3 D.4
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com