題目列表(包括答案和解析)
已知橢圓
=1(其中a>b>0)與直線x+y=1交于P、Q兩點,且OP⊥OQ,其中O為坐標原點.
(1)求
的值;
(2)若橢圓的離心率e滿足
≤e≤
,求橢圓長軸的取值范圍.
探究:本題涉及直線與橢圓的交點,對于此類問題往往聯立它們的方程消去其中的一個未知數,再利用根與系數間的關系,從而得到相應的兩個交點的坐標間的關系,再結合題目中的其它條件將問題解決.
已知數列
的前
項和為
,且
(
N*),其中
.
(Ⅰ) 求
的通項公式;
(Ⅱ) 設
(
N*).
①證明:
;
② 求證:
.
【解析】本試題主要考查了數列的通項公式的求解和運用。運用
關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到
,②由于
,
所以
利用放縮法,從此得到結論。
解:(Ⅰ)當
時,由
得
. ……2分
若存在
由
得
,
從而有
,與
矛盾,所以
.
從而由
得
得
. ……6分
(Ⅱ)①證明:![]()
證法一:∵
∴![]()
∴
∴
.…………10分
證法二:
,下同證法一.
……10分
證法三:(利用對偶式)設
,
,
則
.又
,也即
,所以
,也即
,又因為
,所以
.即
………10分
證法四:(數學歸納法)①當
時,
,命題成立;
②假設
時,命題成立,即
,
則當
時,![]()
![]()
即![]()
即![]()
故當
時,命題成立.
綜上可知,對一切非零自然數
,不等式②成立. ………………10分
②由于
,
所以
,
從而
.
也即![]()
如圖,某地質隊自水平地面A,B,C三處垂直向地下鉆探,自A點向下鉆到A1處發現礦藏,再繼續下鉆到A2處后下面已無礦,從而得到在A處正下方的礦層厚度為A1A2=d1.同樣可得在B,C處正下方的礦層厚度分別為B1B2=d2,C1C2=d3,且d1<d2<d3.過AB,AC的中點M,N且與直線AA2平行的平面截多面體A1B1C1-A2B2C2所得的截面DEFG為該多面體的一個中截面,其面積記為S中.
(Ⅰ)證明:中截面DEFG是梯形;
(Ⅱ)在△ABC中,記BC=a,BC邊上的高為h,面積為S.在估測三角形ABC區域內正下方的礦藏儲量(即多面體A1B1C1-A2B2C2的體積V)時,可用近似公式V估=S中·h來估算.已知V=
(d1+d2+d3)S,試判斷V估與V的大小關系,并加以證明.
| 1 | 3 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com