題目列表(包括答案和解析)
如圖,在三棱錐
中,平面
平面
,
,
,
,
為
中點.(Ⅰ)求點B到平面
的距離;(Ⅱ)求二面角
的余弦值.
![]()
【解析】第一問中利用因為
,
為
中點,所以![]()
而平面
平面
,所以
平面
,再由題設(shè)條件知道可以分別以
、
、
為
,
,
軸建立直角坐標系得
,
,
,
,
,
,
故平面
的法向量
而
,故點B到平面
的距離![]()
第二問中,由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
解:(Ⅰ)因為
,
為
中點,所以![]()
而平面
平面
,所以
平面
,
再由題設(shè)條件知道可以分別以
、
、
為
,
,
軸建立直角坐標系,得
,
,
,
,
,
,故平面
的法向量![]()
而
,故點B到平面
的距離![]()
(Ⅱ)由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com