題目列表(包括答案和解析)
已知函數
.(
)
(1)若
在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間
上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)
在區間
上單調遞增,
則
在區間
上恒成立. …………3分
即
,而當
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當
,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當
,即
時,同理可知,
在區間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使
在此區間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當
時,函數
的圖象恒在直線
下方.
設函數![]()
(1)當
時,求曲線
處的切線方程;
(2)當
時,求
的極大值和極小值;
(3)若函數
在區間
上是增函數,求實數
的取值范圍.
【解析】(1)中,先利用
,表示出點
的斜率值
這樣可以得到切線方程。(2)中,當
,再令
,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了
在區間
導數恒大于等于零,分離參數求解范圍的思想。
解:(1)當
……2分
∴![]()
即
為所求切線方程。………………4分
(2)當![]()
令
………………6分
∴
遞減,在(3,+
)遞增
∴
的極大值為
…………8分
(3)![]()
①若
上單調遞增。∴滿足要求。…10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數
的取值范圍是![]()
已知函數
,(
),![]()
(1)若曲線
與曲線
在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當
時,若函數
在區間[k,2]上的最大值為28,求k的取值范圍
【解析】(1)
,
∵曲線
與曲線
在它們的交點(1,c)處具有公共切線
∴
,![]()
∴![]()
(2)當
時,
,
,![]()
令
,則
,令
,
∴
為單調遞增區間,
為單調遞減區間,其中F(-3)=28為極大值,所以如果區間[k,2]最大值為28,即區間包含極大值點
,所以![]()
【考點定位】此題應該說是導數題目中較為常規的類型題目,考查的切線,單調性,極值以及最值問題都是課本中要求的重點內容,也是學生掌握比較好的知識點,在題目中能夠發現F(-3)=28,和分析出區間[k,2]包含極大值點
,比較重要
設函數
.
(Ⅰ) 當
時,求
的單調區間;
(Ⅱ) 若
在
上的最大值為
,求
的值.
【解析】第一問中利用函數
的定義域為(0,2),
.
當a=1時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
第二問中,利用當
時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數
的定義域為(0,2),
.
(1)當
時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
(2)當
時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
已知函數
.
(Ⅰ)求函數
的單調區間;
(Ⅱ)設
,若對任意
,
,不等式
恒成立,求實數
的取值范圍.
【解析】第一問利用
的定義域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數
的單調遞增區間是(1,3);單調遞減區間是![]()
第二問中,若對任意
不等式
恒成立,問題等價于
只需研究最值即可。
解: (I)
的定義域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函數
的單調遞增區間是(1,3);單調遞減區間是
........4分
(II)若對任意
不等式
恒成立,
問題等價于
,
.........5分
由(I)可知,在
上,x=1是函數極小值點,這個極小值是唯一的極值點,
故也是最小值點,所以
; ............6分
![]()
當b<1時,
;
當
時,
;
當b>2時,
;
............8分
問題等價于![]()
........11分
解得b<1 或
或
即
,所以實數b的取值范圍是
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com