題目列表(包括答案和解析)
(1)試求m的值,并分別寫出x′和y′用x、y表示的關系式;
(2)將(x,y)作為點P的坐標,(x′,y′)作為點Q的坐標,上述關系式可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.
當點P在直線y=x+1上移動時,試求點P經(jīng)該變換后得到的點Q的軌跡方程.
(3)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在c 該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.
已知復數(shù)z0=1-mi(M>0),z=x+yi和ω=x′+y′i,其中x,y,x′,y′均為實數(shù),i為虛數(shù)單位,且對于任意復數(shù)z,有ω=
·
,|ω|=2|z|.
(Ⅰ)試求m的值,并分別寫出x′和y′用x、y表示的關系式;
(Ⅱ)將(x,y)作為點P的坐標,(x′,y′)作為點Q的坐標,上述關系式可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.
當點P在直線y=x+1上移動時,試求點P經(jīng)該變換后得到的點Q的軌跡方程;
(Ⅲ)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.
(Ⅰ)試求m的值,并分別寫出x′和y′用x、y表示的關系式;
(Ⅱ)將(x,y)作為點P的坐標,(x′,y′)作為點Q的坐標,上述關系式可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q.
當點P在直線y=x+1上移動時,試求點P經(jīng)該變換后得到的點Q的軌跡方程;
(Ⅲ)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.
(1)試求m的值,并分別寫出x′和y′用x、y表示的關系式;
(2)將(x,y)作為點P的坐標,(x′,y′)作為點Q的坐標,上述關系式可以看作是坐標平面上點的一個交換;它將平面上的點P變到這一平面上的點Q.已知點P經(jīng)該變換后得到的點Q的坐標為(
,2),試求點P的坐標;
(3)若直線y=kx上的任一點經(jīng)上述變換后得到的點仍在該直線上,試求k的值.
1. 構造向量
,
,所以
,
.由數(shù)量積的性質(zhì)
,得
,即
的最大值為2.
2. ∵
,令
得
,所以
,當
時,
,當
時,
,所以當
時,
.
3.∵
,∴
,
,又
,∴
,則
,所以周期
.作出
在
上的圖象知:若
,滿足條件的
(
)存在,且
,
關于直線
對稱,
,
關于直線
對稱,∴
;若
,滿足條件的
(
)存在,且
,
關于直線
對稱,
,
關于直線
對稱,
∴
.
4. 不等式
(
)表示的區(qū)域是如圖所示的菱形的內(nèi)部,
∵學高考解題技巧---數(shù)學題型專題--填空題的解法.files/image358.gif)
,
當
,點
到點
的距離最大,此時
的最大值為
;
當
,點
到點
的距離最大,此時
的最大值為3.
5. 由于已有兩人分別抽到5和14兩張卡片,則另外兩人只需從剩下的18張卡片中抽取,共有
種情況.抽到5 和14的兩人在同一組,有兩種情況:
(1) 5 和14 為較小兩數(shù),則另兩人需從15~20這6張中各抽1張,有
種情況;
(2) 5 和14 為較大兩數(shù),則另兩人需從1~4這4張中各抽1張,有
種情況.
于是,抽到5 和14 兩張卡片的兩人在同一組的概率為
.
6. ∵
,∴
,
設
,
,則
.
作出該不等式組表示的平面區(qū)域(圖中的陰影部分
).
令
,則
,它表示斜率為
的一組平行直線,易知,當它經(jīng)過點
時,
取得最小值.
解方程組
,得
,∴學高考解題技巧---數(shù)學題型專題--填空題的解法.files/image486.gif)
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com