題目列表(包括答案和解析)
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
![]()
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0),
,P(0,0,2).
![]()
(1)證明:易得
,
于是
,所以![]()
(2)
,
設平面PCD的法向量
,
則
,即
.不防設
,可得
.可取平面PAC的法向量
于是
從而
.
所以二面角A-PC-D的正弦值為
.
(3)設點E的坐標為(0,0,h),其中
,由此得
.
由
,故
所以,
,解得
,即
.
解法二:(1)證明:由
,可得
,又由
,
,故
.又
,所以
.
![]()
(2)如圖,作
于點H,連接DH.由
,
,可得
.
因此
,從而
為二面角A-PC-D的平面角.在
中,
,由此得
由(1)知
,故在
中,![]()
因此
所以二面角
的正弦值為
.
(3)如圖,因為
,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故
或其補角為異面直線BE與CD所成的角.由于BF∥CD,故
.在
中,
故![]()
![]()
在
中,由
,
,![]()
可得
.由余弦定理,
,
所以
.
解析:依題意得f(x)的圖象關于直線x=1對稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數f(x)是以4為周期的函數.由f(x)在[3,5]上是增函數與f(x)的圖象關于直線x=1對稱得,f(x)在[-3,-1]上是減函數.又函數f(x)是以4為周期的函數,因此f(x)在[1,3]上是減函數,f(x)在[1,3]上的最大值是f(1),最小值是f(3).
答案:A
已知函數![]()
;
(1)若函數
在其定義域內為單調遞增函數,求實數
的取值范圍。
(2)若函數
,若在[1,e]上至少存在一個x的值使
成立,求實數
的取值范圍。
【解析】第一問中,利用導數
,因為
在其定義域內的單調遞增函數,所以
內滿足
恒成立,得到結論第二問中,在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,轉換為不等式有解來解答即可。
解:(1)
,
因為
在其定義域內的單調遞增函數,
所以
內滿足
恒成立,即
恒成立,
亦即
,
即可 又![]()
當且僅當
,即x=1時取等號,
在其定義域內為單調增函數的實數k的取值范圍是
.
(2)在[1,e]上至少存在一個x的值使
成立,等價于不等式
在[1,e]上有解,設![]()
上的增函數,
依題意需![]()
實數k的取值范圍是![]()
| |||||||||||||||
已知
,函數![]()
(1)當
時,求函數
在點(1,
)的切線方程;
(2)求函數
在[-1,1]的極值;
(3)若在
上至少存在一個實數x0,使
>g(xo)成立,求正實數
的取值范圍。
【解析】本試題中導數在研究函數中的運用。(1)中
,那么當
時,
又
所以函數
在點(1,
)的切線方程為
;(2)中令
有 ![]()
![]()
對a分類討論
,和
得到極值。(3)中,設
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 當
時,
又
∴ 函數
在點(1,
)的切線方程為
--------4分
(Ⅱ)令
有 ![]()
![]()
①
當
即
時
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
極大值 |
|
極小值 |
|
故
的極大值是
,極小值是![]()
②
當
即
時,
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述
時,極大值為
,無極小值
時 極大值是
,極小值是
----------8分
(Ⅲ)設
,![]()
對
求導,得![]()
∵
,
![]()
∴
在區間
上為增函數,則![]()
依題意,只需
,即
解得
或
(舍去)
則正實數
的取值范圍是(![]()
,
)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com