題目列表(包括答案和解析)
如圖,橢圓中心在原點,F為左焦點,當
⊥
時其離心率為
,此類橢圓被稱為“黃金橢圓”.
(1)類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率等于多少?(只要寫出結論即可)
(2)已知橢圓E:
的一個焦點f(c,0)(c>0),試證:若a,b,c不是等比數列,則E一定不是“黃金橢圓”.
“肇實,正名芡實,因肇慶所產之芡實顆粒大、藥力強,故名.”某科研所為進一步改良肇實,為此對肇實的兩個品種(分別稱為品種A和品種B)進行試驗.選取兩大片水塘,每大片水塘分成n小片水塘,在總共2n小片水塘中,隨機選n小片水塘種植品種A,另外n小片水塘種植B.
(1)假設n=4,在第一大片水塘中,種植品種A的小片水塘的數目記為ξ,求ξ的分布列和數學期望;
(2)試驗時每大片水塘分成8小片,即n=8,試驗結束后得到品種A和品種B在每個小片水塘上的每畝產量(單位:kg/畝)如下表:
分別求品種A和品種B的每畝產量的樣本平均數和樣本方差;根據試驗結果,你認為應該種植哪一品種?
| b |
| 128 |
| b |
| 128 |
設函數
.
(Ⅰ) 當
時,求
的單調區間;
(Ⅱ) 若
在
上的最大值為
,求
的值.
【解析】第一問中利用函數
的定義域為(0,2),
.
當a=1時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
第二問中,利用當
時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數
的定義域為(0,2),
.
(1)當
時,
所以
的單調遞增區間為(0,
),單調遞減區間為(
,2);
(2)當
時,
>0, 即
在
上單調遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com