題目列表(包括答案和解析)
設函數![]()
(1)當
時,求曲線
處的切線方程;
(2)當
時,求
的極大值和極小值;
(3)若函數
在區間
上是增函數,求實數
的取值范圍.
【解析】(1)中,先利用
,表示出點
的斜率值
這樣可以得到切線方程。(2)中,當
,再令
,利用導數的正負確定單調性,進而得到極值。(3)中,利用函數在給定區間遞增,說明了
在區間
導數恒大于等于零,分離參數求解范圍的思想。
解:(1)當
……2分
∴![]()
即
為所求切線方程!4分
(2)當![]()
令
………………6分
∴
遞減,在(3,+
)遞增
∴
的極大值為
…………8分
(3)![]()
①若
上單調遞增!酀M足要求!10分
②若![]()
∵
恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數
的取值范圍是![]()
已知函數
在
處取得極值2.
⑴ 求函數
的解析式;
⑵ 若函數
在區間
上是單調函數,求實數m的取值范圍;
【解析】第一問中利用導數![]()
又f(x)在x=1處取得極值2,所以
,
所以![]()
第二問中,
因為
,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有
,得![]()
解:⑴ 求導
,又f(x)在x=1處取得極值2,所以
,即
,所以
…………6分
⑵ 因為
,又f(x)的定義域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上單調遞增,在
上單調遞減,當f(x)在區間(m,2m+1)上單調遞增,則有
,得
, …………9分
當f(x)在區間(m,2m+1)上單調遞減,則有
得
…………12分
.綜上所述,當
時,f(x)在(m,2m+1)上單調遞增,當
時,f(x)在(m,2m+1)上單調遞減;則實數m的取值范圍是
或![]()
對于下列命題:
①函數![]()
的圖象關于點
對稱;
②
的單調增區間為![]()
;
③已知點N、P在△ABC所在平面內,且
,
則N、P依次是△ABC的重心、垂心;
④已知向量
,且
,則三點A,B,D一定共線.
以上命題成立的序號是________.
.對于下列命題:
① 函數![]()
的圖象關于點
對稱;
②
的單調增區間為![]()
;
③ 已知點N、P在
所在平面內,且
,
則N、P依次是
的重心、垂心;
④ 已知向量
,且
,則三點
一定共線。
以上命題成立的序號是__________________.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com